

Ultrafast Dynamics and Non-linear Light Emission from Metallic Nanoparticles

Arnaud Arbouet

Groupe NeO - Nano-Optique et Nanomatériaux pour l'Optique

CEMES - CNRS

<u>arbouet@cemes.fr</u> - June 22nd, 2016

Plasmonics \rightarrow Manipulation of light absorption at nanometer scale

Anderson et al Nanoletters, 10, 2519 **2010**

Light-Matter coherent coupling is short-lived

Central applications of plasmonics nanostructures involve products of plasmon relaxation

Hot electrons Heat

Brongersma et al, *Nature Nanotech.*, 9, 25, **2015** Huang & EL-Sayed, J. Adv. Res., 1, 13, **2010**

To optimize and even control \rightarrow Need to know relaxation processes and relevant timescales

Relaxation processes in metallic nanostructures ? **Timescales** ? **Size & Shape effects** ?

Ultrafast dynamics of metallic Nanostructures

Electronic and Optical Properties of Metallic Nanostructures

Light-Matter Coherent Coupling

Femtosecond Pump-Probe spectroscopy

Ultrafast electronic dynamics in metallic nanostructures

Two-Photon Photoluminescence

Acoustic Vibrations

Electronic and Optical Properties of Metallic Nanostructures

The properties of **metals** are mainly governed by **free electrons**

Free electrons can be described by the **Drude Model**

$$m_e \frac{\partial^2 \mathbf{r}}{\partial t^2} + m_e \gamma \frac{\partial \mathbf{r}}{\partial t} = e \mathbf{E_0} e^{-i\omega t}$$

Electromagnetic response of a Material captured in its Dielectric constant

$$\varepsilon_{Drude} = \varepsilon_1 + i \ \varepsilon_2 = 1 - \frac{\omega_P^2}{\omega^2 + i\gamma\omega}$$

Gold :
$$\gamma_{\text{bulk}} = 70 \text{ meV} \rightarrow \text{Collision Time} = 1/\gamma_{\text{bulk}} \sim 10 \text{ fs}$$

Silver : $\gamma_{\text{bulk}} = 20 \text{ meV} \rightarrow \text{Collision Time} \sim 30 \text{ fs}$

Drude model with values for Gold

Noble metals : same conduction electrons but different colors ?

Drude model with values for Gold

Interband Transition threshold in Noble metals : Cu : 2.15 eV - Au : 2.4 eV - Ag : 4 eV

Different values → Different colors !

Noble metals (Ag, Au,) Flat d-bands + quasi-free conduction electrons Interband transition threshold : $\[\hbar\Omega_{ib} = 2.4\,\mathrm{eV}\]$ for Au

Dielectric constant:

$$\varepsilon_{bulk}(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega) = \varepsilon^{ib}(\omega) - \frac{\omega_P^2}{\omega(\omega + i\gamma_D)}$$

InterbandIntrabandbound electronsFree electrons

<u>Metal nanoparticles with sizes > 2 nm</u> : $250 < N_{at} < 10^{6}$

- ε^{ib} unchanged

- confinement : \checkmark scattering with surfaces \Rightarrow increase in γ_D

Light-Matter Coherent Coupling

Ultrafast dynamics of metallic Nanostructures

Coherent coupling

Plasmon Dephasing

	-	-					
0 fs	10 fs	100 fs	1 ps	10 ps	100 ps	Time	

Quality factor $Q \rightarrow$ Number of plasmon oscillations before damping

To get rid of <u>inhomogeneous</u> broadening \rightarrow Spectroscopy of <u>individual</u> particles

Dark-Field Optical spectroscopy on *individual* nano-objects

Sönnichsen et al, *PRL*, 88, 077402, **2002**

 \rightarrow Surface Plasmon dephasing Time \propto 1-20 fs

→ Smaller dephasing rate <u>away from Interband Transitions</u> and for <u>small volumes</u>

Measuring Plasmon line width in (S)TEMs \rightarrow Highly <u>monochromatic</u> electron beam

Mono- λ FEI Titan Schottky, 70 meV FWHM

M. Bosman, IMRE, Singapore

 \rightarrow Surface Plasmon Damping depends on plasmon <u>Energy</u> not particle <u>Shape !</u>

High monochromaticity + Spatial Resolution

→ Surface Plasmon Damping <u>mapped within a nanostructure</u>

Time-Resolved studies of plasmon dephasing require <u>ultrashort</u> pulses (< 15 fs)

- SHG Lambrecht et al, Appl. Phys. B 68, 419–423, 1999
- THG Lambrecht et al, Phys. Rev. Lett., 83, 4421, 1999
- FROG: Anderson et al, Nanoletters, 10, 2519 2010

→ Surface Plasmon dephasing Time: 6 fs (Au) 7 fs (Ag)

Femtosecond Pump-Probe Spectroscopy

Pump pulse

time

time

Femtosecond Pump-Probe Spectroscopy

Ultrafast Electron Dynamics

Ultrafast dynamics of metallic Nanostructures

0 fs

Time

The dephasing of the plasmon (~10 fs) yields an ensemble of electron-hole pairs

→ <u>Athermal</u> electronic distribution

 \rightarrow Internal thermalization of electron gas is mediated by <u>electron-electron interactions</u>

To selectively address electron internal thermalization

 \rightarrow Probe <u>resonant</u> with <u>interband transitions</u>

 \rightarrow Acceleration of electronic thermalization in small nanoparticles

Christophe Voisin, PhD, **2001** Voisin et al. Phys. Rev. Lett. 85, 2200, **2000**

 \rightarrow <u>Acceleration</u> of electronic thermalization in small nanoparticles

 \rightarrow Less efficient screening of Coulomb interaction close to surfaces

Christophe Voisin, PhD, **2001** Voisin et al. Phys. Rev. Lett. 85, 2200, **2000** After a few hundreds fs, the electron gas is thermalized but hotter than lattice

The Two-Temperature Model assumes that electron gas and Lattice are separately thermalized

After a few hundreds fs, the electron gas is thermalized but hotter than lattice

The Two-Temperature Model assumes that electron gas and Lattice are separately thermalized

Probe <u>not resonant</u> with interband transitions $(\omega_{pr} \leq \Omega_{ib})$

$$\Delta T/T \propto \Delta u_e$$

 \rightarrow Energy stored in electron gas

Systematic studies as a function of size

 \rightarrow Decrease of τ_{e-ph} with nanoparticle size

See also: Studies by Hartland, Aeschlimann, Bigot....

Arbouet et al. Phys. Rev. Lett. 90, 177401, 2003

Systematic investigation: size, environment...

- τ_{e-ph} independent from:
 - environment
 - Fabrication process
- → intrinsic effect

 τ_{e-ph} decreases for D < 10 nm :

- → Increase of electron-phonon coupling for smaller nanoparticles
- → Reduced screening of Coulomb interaction in the vicinity of surfaces

```
Bulk Ag: 850 fs - Bulk Au: 1.15 ps
```


Arbouet et al. Phys. Rev. Lett. 90, 177401, 2003

$$C_e = \gamma T_e$$

→ No monoexponential decrease for higher pump fluences

→ <u>Increase</u> of measured Electron-Lattice thermalization Time

- \rightarrow No more intrinsic effect
- \rightarrow Caution when measuring electron-lattice thermalization time

Both electron-electron and electron-phonon interactions can be taken into account using Boltzman's equation

Alternatively, the non equilibrium dynamics can be described by a **Three-Temperature Model**

Zavelani-Rossi et al, ACS Photonics, 2 (4), 521, **2015**

Time-Resolved Studies on individual Nano-Objects

To address a **single** metal nanoparticle : <u>dilute</u> samples

 \rightarrow I nanoparticle in probe focal spot S_{PR}

$$\left| T \approx \left(1 - \frac{\sigma_{ext}}{S_{pr}} \right) \times T_0 \right| \longleftarrow$$

Transmission of probe beam without metal particle

To address a **single** metal nanoparticle : <u>dilute</u> samples

 \rightarrow I nanoparticle in probe focal spot S_{PR}

$$T \approx \left(1 - \frac{\sigma_{ext}}{S_{pr}}\right) \times T_0 \bigg| \longleftarrow$$

Transmission of probe beam without metal particle

Pump-induced transmission change :

$$\frac{\Delta T}{T} \approx -\left(\frac{\Delta \sigma_{ext}}{\sigma_{ext}}\right) \left(\frac{\sigma_{ext}}{S_{pr}}\right)$$

Relative modification of the extinction cross section induced by the pump pulse

Typ.: 10⁻³ - 10⁻⁴ for low perturbation

Geometrical factor depending on MNP & focusing

<u>Ex:</u> NA = 0.8, Au NP 20 nm \rightarrow 10⁻³

Pump-probe on a individual **nano-object** \rightarrow **Dilute samples**

 \rightarrow Tight focusing + high S/N ratio (10⁻⁶ - 10⁻⁷)

Studies on individual 20 nm Ag nanospheres

Transient absorption spectroscopy

→ Linear extinction spectrum + Ultrafast response

3

Studies on individual 20 nm Ag nanospheres

- \rightarrow <u>Increase</u> of electron-lattice thermalization time with excitation energy
- \rightarrow Excellent agreement with Two-Temperature Model

Two Photoluminescence in Gold Nanostructures

Two-Photon induced Photoluminescence from gold nanoparticles

2nd order incoherent non-linear emission mechanism

Beversluis et al, PRB, 68, 115433, **(2003)** Biagioni et al, PRB, 80, 045411, **(2009)**

\Rightarrow SP <u>spectral</u> characteristics

Bouhelier et al, PRL, 95, 267405, (2005)

 \Rightarrow SP <u>spatial</u> intensity distribution

Okamoto et al, Prog. Surf. Sci., 84, 199, **(2009)**

Theory

TPL = Incoherent 2^{nd} order non-linear process

$$I_{\text{TPL}}(\mathbf{r}_0, \boldsymbol{\omega}_{exc}) = \int_V |\mathbf{E}(\mathbf{r}, \boldsymbol{\omega}_{exc})|^4 dV$$

Green Dyadic Function formalism

Theory

Viarbitskaya et al, Nature Materials 12, 426–432 (2013)

Theory

Viarbitskaya et al, Nature Materials 12, 426–432 (2013)

Theory

Theory

Viarbitskaya et al, Nature Materials 12, 426–432 (2013)

Theory

Viarbitskaya et al, Nature Materials 12, 426–432 (2013)

Local E-field intensity distribution depends on polarization : optical adressing & control

Excellent agreement with GDF simulations

Fedou et al, PCCP, 15, 4205-4213, **2013** Viarbitskaya et al, APL 103, 131112-4, **2013**

TPL at 800 nm (1.55 eV)

TPL at 800 nm (1.55 eV)

Energy Filtered TEM

Gu et al, PRB 83, 195433 (2011)

TPL as a function of pulse duration

TPL as a function of pulse duration

Two-pulse correlation measurement

TPL ≠ **SHG** - **Incoherent** process !

SHG: Two photon transition through a virtual state

TPL: Two sequential single-photon absorption steps mediated by a <u>real electronic state</u>

Limiting step in TPL dynamics:

 \rightarrow Relaxation of the transient distribution excited in the sp conduction band by the first photon

→ Picosecond Timescale !

Summary I	
Plasmon dephasing	→ Characteristic Timescale: 10-20 fs → Accessible via Frequency- or Time-Resolved techniques
Electron gas thermalization	 → Timescale: 350 fs (bulk Ag) and 500 fs (bulk Au) → Faster in smaller nano-objects (< 10 nm) → Bulk-like for sizes > 20 nm
Electron-Lattice Thermalization	 → Timescale: 850 fs (bulk Ag) and 1.15 ps (bulk Au) → Faster in smaller nano-objects (< 10 nm) → Bulk-like for sizes > 20 nm → The nanoparticle lattice is <u>heated in a few picoseconds</u>
Two-Photon Photoluminescence	→ TPL gives access to local electric field distribution

 \rightarrow 2nd order incoherent process influenced by electronic relaxation

Acoustic Vibrations

Ultrafast dynamics of metallic Nanostructures

Following absorption of pump pulse $\rightarrow 2$ mechanisms can launch acoustic vibrations

ISOTROPIC mechanisms \rightarrow **HIGH SYMMETRY** acoustic vibrations modes

Excitation of an acoustic vibration mode \rightarrow atoms moving periodically

- → Modulation of the **lattice constant** and **volume**
- → Modulation of the electron density, dielectric constant and plasma frequency

Surface Plasmon Resonance of a metallic nanosphere:

$\Omega_{RPS} =$	ω_p
	$\sqrt{\epsilon_1^{ib}(\Omega_R)+2\epsilon_m}$

Excitation of an acoustic vibration mode \rightarrow atoms moving periodically

- → Modulation of the **lattice constant** and **volume**
- → Modulation of the electron density, dielectric constant and plasma frequency

First measurements of single gold nanorods with well-characterized <u>dimensions</u> and <u>structure</u>

First measurements of single gold nanorods with well-characterized <u>dimensions</u> and <u>structure</u>

- \rightarrow <u>Breathing</u> and <u>Extensional</u> mode detected
- → Frequencies in agreement with <u>continuum mechanics</u>
- → Single particle <u>elastic moduli</u> agree well with <u>bulk values</u>

Hu et al, JACS, 125, 14925, **2003** Van Dijk et al, Phys. Rev. Lett., **95**, 267406, **2005** Zijlstra et al, Nanoletters, 8, 3493, **2008**

Damping of the Acoustic Vibrations of Individual Gold Nanorings

Damping time (ps)

Pump-probe delay (ps)

Marty et al, Nanoletters, 11(8), 3301–3306, **2011**

Transient absorption spectroscopy of large crystalline gold nanoparticles

<u>Detection limit :</u> $\Delta T/T \sim 10^{-7}$

 \Rightarrow Several acoustic vibration modes visible

Transient absorption spectroscopy of large crystalline gold nanoparticles

Detection limit : $\Delta T/T \sim 10^{-7}$

 \Rightarrow Several acoustic vibration modes visible

 \Rightarrow Focus on the **high frequency** mode

Systematic experiments on 40 different MNPs

Systematic experiments on 40 different MNPs

Fedou et al, Phys. Chem. Chem. Phys., 15, 4205-4213, (2013)

Damping time of the thickness vibrations

Damping very different from one particle to the other

Numerical fitting by damped cosine :

$$Ae^{-\gamma t}\cos(\frac{2\pi t}{T} + \varphi)$$

 \Rightarrow Damping rate & damping time :

 \Rightarrow

 $Q = \pi v \tau$

Energy dissipation to environment : a basic model

Energy dissipation to environment : a basic model

 $Q_{env} \approx 7$

Sound radiation from flat metal particles :

Simple 3-layer model

Unidimensional sound propagation

Boundary conditions at each interface

Complex frequencies :

$$\widetilde{\omega} = \omega + i\gamma_{env}$$

Quality factor for air/Au/SiO₂ :

Experimental distribution of quality factors

Strong dispersion of measured Q

Experimental distribution of quality factors

Strong dispersion of measured Q

Quality factor always higher than predicted w/o intrinsic contribution

Strong dispersion of measured Q

Quality factor always higher than predicted w/o intrinsic contribution

Mechanical decoupling MNP/substrate

Residual interfacial PVP layer

Intrinsic contribution ?

Fedou et al, Phys. Chem. Chem. Phys., 15, 4205-4213, (**2013**)

Substrates have an influence on the damping of the acoustic vibrations of MNPs

→ Need to get rid of substrate to address *intrinsic damping* mechanisms

Damping of Acoustic Vibrations of Optically Trapped Single Gold Nanoparticles

- \rightarrow Particle-to-particle variation in damping times
- → Vibrational damping not only by dissipation into the liquid, but also by intrinsic mechanisms
- \rightarrow Experiments on gold nanorods suggest that <u>crystal structure</u> is **important**

Conclusion

Ultrafast dynamics of metallic nano-objects:

- → Complex sequence of relaxation processes
- \rightarrow Timescales from <u>a few fs</u> to <u>several hundreds ps</u>

Enhancement of optical response by Surface Plasmons:

- → Ultrafast Time-Resolved Studies on *individual* nano-objects
- \rightarrow Selective investigation of the different processes
- \rightarrow Size effects evidenced on electronic and vibrational dynamics

Acknowledgements

CEMES-CNRS, Toulouse

Christian Girard

Vincent Paillard

Adnen Mlayah

Renaud Marty

Julien Fedou

Peter Wiecha

Erik Dujardin

Jada Sharma

Sviatlana Viarbitskaya

Alexandre Teulle

Michel Bosman S.Tripathy

IMRE, Singapore

Fabrice Vallée Natalia Del Fatti LASIM, Lyon

CPER 2007-2013