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Figure 2 | PSHE and SPP scattering by a spherical nanoparticle. (a) Schematic of the direct PSHE experiment. (b) The intensity of the SPPs excited in
opposite directions for a full set of incident polarization states from RCP through linear p-polarized to LCP. (c) Schematic of the reciprocal experiment.
(d) The dependence of the intensity of the directionally scattered light on the polarizer orientation for two orthogonal quarter-waveplate orientations
(marked as ‘þ45’ and ‘–45’). For all measurements, the 60-nm-diameter Au nanoparticle is placed on the 50-nm-Au film on glass substrate. The
illumination light wavelength is 632.8 nm. (e) The wavevector spectrum (top row) and corresponding real space intensity distribution (bottom row) of the
SPP waves excited with LCP, linear p-polarized and RCP illuminating light (the snapshots from Supplementary Movie 2).
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Figure 3 | SPP scattering by slits in a metal film. (a) Schematic of the SPP scattering measurements on a slit and a slit grating. (b) The dependence of the
intensity of the scattered light on linear analyser orientation for the individual single slit with width 130 nm and length 20 mm (top), and diffraction
grating consisting of a 1D array of slits with a slit width, length and periodicity of 500 nm, and 20 and 3mm, respectively (bottom). The slits have been
fabricated in a 50-nm-gold thin film. The observed diffraction pattern averaged over all analyser angles is shown on the left.
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of the helix show symmetric distributions of enhanced
optical chirality with respect to each other. More precisely,
the values of optical chirality feature the same magnitude
but opposite sign at corresponding positions. Therefore,
the dissymmetry factor g! [cf. Eq. (6)] can be calculated.

The result is shown in Fig. 3(a) where we plot the
enhancement ĝ! of g! with respect to the value g obtained
for circularly polarized light. This is carried out in the same
way as the calculation of Ĉ [cf. Eq. (4)]. Note that this
factor is not for the single helix, but rather for a combina-
tion of both the left-handed and the right-handed helices as
depicted in Fig. 1. For a real application, one has to cover
symmetric regions of both of these structures with the
chiral sample.

We find a quite complicated distribution of ĝ! that is
different from the one for Ĉ plotted in Fig. 2. This is due to

the contribution of the electric energy density to the dis-
symmetry factor which is also high at locations with strong
optical chirality [cf. Fig. 3(b)]. As the electric-field en-
hancement is much stronger than optical chirality enhance-
ment, the dissymmetry factor is in the end lower than for
circularly polarized light at these positions. However, the
calculation shows that there are regions where also the
dissymmetry factor and therefore the enantioselectivity is
increased. We have reached an enhancement factor of up to
7 for this model configuration. Note that the superstructure
used for this analysis is achiral as it consists of both of
the enantiomers of the chiral plasmonic helix. Therefore,
we expect no chiroptical far-field response in the absence
of chiral molecules, which allows for background-free
measurements.
Of course, this is not a useful configuration for real

sensing applications. Not only is the enhancement too
small, but also the fabrication of the chosen structure is
challenging due to the three-dimensional shape and the
small dimensions. Also, the regions with enhanced enan-
tioselectivity would be difficult to access. Yet, this example
shows that chiral plasmonic nanostructures can indeed
enhance the sensitivity of an enantiomer sensor.
In the following discussion, we will investigate different

structures that overcome these problems. To keep to the
general aim of this work, we decided to restrict our further
analysis to the enhancement of optical chirality and leave
the calculation of the dissymmetry factor to future work.
Our results can be directly used for a simpler detection
scheme in which the rate of excitation for just one incident
polarization is measured directly. This scheme also allows
for a distinction between the two enantiomers of that
molecule due to the change of the sign of ! in Eq. (2).
Our analysis of optical chirality enhancement will also
suit other imaginable applications based on this quantity.
As a consequence of the general approach, it is up to the
readers to adopt our results to the needs of their specific
applications.

B. Planar nanostructures

We start with an analysis of optical chirality enhance-
ment by the gold gammadion structure introduced in
Ref. [15] with respect to enantiomeric sensing. We use
similar dimensions: 80 nm for both the width of the arms
and the gaps, leading to a total width of 400 nm, but a gold
thickness of 20 nm instead of 100 nm. For different sizes of
the nanostructure, we expect the optical chirality to scale
with the electric dipole moment of the particle plasmon,
and hence with the volume of the individual nanoparticles.
The structure is embedded in air. We calculate the fields at
the fundamental plasmon resonance at 2:01 "m.
In contrast to the helix, the gammadion shows a similar

behavior for both LCP and RCP as incident polarizations
(cf. Fig. 4). We calculate enhancement factors for optical
chirality in the range of 20, which is comparable to the

FIG. 2. Optical chirality enhancement for (a) a left-handed
helix with left-handed circularly polarized light and (b) a
right-handed helix with right-handed circularly polarized light
at a wavelength of 2:03 "m. Diameter and height of the helix are
400 nm with a gold thickness of 80 nm. Both combinations show
enhanced optical chirality where the values of maximum and
minimum enhancement are denoted by the black horizontal lines
across the color bars. The regions with enhanced optical chirality
are located at corresponding positions of the respective helix, but
their signs flip. The pictures addressing the polarization state are
taken from the detector’s view; hence, the direction of the arrow
indicates the handedness of the field vectors in space at a fixed
time.

FIG. 3. (a) Enhancement of dissymmetry factor ĝ! near a
plasmonic helix structure with respect to circularly polarized
light. Superchiral light fields with up to 7 times higher enantio-
selectivity could be obtained. This value does not follow the
enhancement of optical chirality directly, as (b) the enhancement
of electric energy density Ûe also enters the calculation. The
electric energy density shows similar distributions as optical
chirality, leading to more complicated shapes of the superchiral
light fields. Note the different scale of the color bar related to the
plot of ĝ! compared to the plots of Ĉ in Fig. 2.
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Surface	plasmon	mode	

dielectric (1) / metal (2) interface 
 

 
•  propagates along the interface (40 µm at 800nm) 
 
•  confines the field at the interface 

•  highly sensitive to n 
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Dispersion	rela.on	

□ Well-defined mode: 	



□ 70-90s: SP optics, thin films 
spectroscopy, refractive 
index sensing, etc. 

□ 00s: EOT, plasmonic 
crystals, etc. 

d<<λ

□ sub-wavelength apertures 
and extended structures 

ω

F[k]	

k	
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other originating in the coupling of the field to the wave-
guide mode of the aperture, which is naturally diameter
dependent. Thereby we provide a complete description of
the radiation by holes in the optical regime that involves
both vectorial aspects of diffraction and the real properties
of the metal screen.

Our experiments consist of measuring the angular dis-
tribution of the light diffracted through single holes. To this
aim, we have designed a high-precision goniometry setup,
described in detail in the Supplemental Material [23].
We used 300 nm (h) thick Ag films freely suspended or
deposited on a glass substrate (thickness 1 mm). Using a
focused ion beam (FIB), circular holes were milled through
the metal film. We have checked that both suspended and
deposited films provided the same results, the latter ones
being more convenient experimentally (silica substrate on
the illumination side). The samples were positioned in
the xy plane of the goniometer [see Fig. 1(a)] and the
hole carefully aligned along the optical axis of the setup.
A single mode Gaussian beam emitted from a laser diode at
a wavelength ! ¼ 660 nm was linearly polarized and
weakly focused at normal incidence on the metal surface
by a microscope objective (10" , numerical aperture
NA ¼ 0:3), providing a compromise between plane-wave
excitation and sufficient excitation density. The transmitted
light was then collected in the far field with a multimode
fiber coupled to a spectrometer. The latter behaved like a
bandpass filter, where only photons detected in a small
window around ! are recorded. The fiber tip is scanned
from " ¼ #60$ to þ30$ in a plane perpendicular to the
metal film and passing through the center of the hole. We
checked that no depolarization was induced by the setup,
and that usual scalar-type diffraction patterns from large
holes (kr & 1) were recovered [Fig. 2(a)]. Because of the

weak transmitted signal through subwavelength holes,
great care was taken to keep optical noise under control
with good thermal and mechanical stability of the whole
setup.
For the theoretical analysis, we have used the coupled

mode method (CMM), described in [3,24], which is valid for
opaque metal films, i.e., for film thickness larger than 2–3
times the skin depth # ¼ !=½2$Imð ffiffiffiffiffiffi

%m
p Þ*, where %m is the

dielectric constant of the metal. The CMM relies on a modal
expansion of the field, where the dielectric properties of the
metal are approximately treated via the surface impedance
boundary conditions. The radiation pattern for any hole
diameter can be obtained within the CMM, provided enough
waveguide modes in the hole are taken into account.
However, for a sufficiently small hole diameter the trans-
mission process is controlled by the fundamental waveguide
mode (TE11) alone. This has two important consequences.
First, it justifies that the experiments are performed with an
illumination only set at normal incidence, since the radiation
patterns of such small holes do not depend on the angle of
incidence in this regime. Second, the radiation pattern, being
then independent of the details of the relative amplitudes of
the different waveguide modes, is accurately represented by
the CMM. Moreover, the scattering cross section &ð";'Þ
(power flux per solid angle along the direction defined by "
and ') can be computed analytically. For a circular hole,
using polar coordinates and defining the x axis (' ¼ 0$) as
pointing in the direction of the in-plane component of the
incident field, we obtain (see Supplemental Material [23]

FIG. 1 (color). (a) Scheme of the single hole geometry. (b) SEM
imageof a singleholewith a diameterd ¼ 220 nm. (c)Transmitted
intensity at " ¼ 0$ for a single hole in Ag illuminated at normal
incidence, as a function of hole diameter (film thickness
h ¼ 300 nm). Experimental data are shown as black circles
(including error bars on the measured angular distributions and
hole diameters) while calculations performed using the coupled
mode method are rendered by the solid red line.

FIG. 2 (color). Diffraction pattern recorded from holes with
diameters (a) d ¼ 5 (m (kr & 1), (b) 1:1 (m, (c) 0:6 (m, and
(d) 0:3 (m [a logarithmic scale is used in panel (a)]. Single
apertures are illuminated with an incident electric field polarized
along the x axis and the diffraction angular pattern is measured
scanning in the yz plane (I?, red curves) and in the xz plane
(Ik, black curves). Solid lines correspond to theory (CMM) and
points are experimental data [in (d), dashed lines correspond to
PEC theory]. (Inset) Error on the diameter of a hole (%), induced
by nanofabrication (FIB milling).
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Surface	plasmon	field	

□ SP field: TM-polarized	
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□ Scales	



Field	ellip.city	

□ Elliptical polarization	

□ A measure for the ellipticity (Berry, 2000)	

Complex field	

Real field	

A connection with the spin density	
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Surface	plasmons	as	spinning	near	fields	

□ TM-polarized spinning field	

Electric field ellipticity	
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Spin-orbit	coupling:	Spin	Hall	Effect	of	Light	

□ The Spin-Hall Effect of Light (SHEL)	 Input state	

Output state	

Hosten and Kwiat, Science 319, 787 (2008)	



Spin-orbit	coupling	and	surface	plasmons	

□ Source-accompanying local frame 

•  Space variant polarization states 
 
•  Geometric phases 

•  Spin-orbit coupling	

w<<λ



Huygens-Fresnel	modeling	

S – curvilign coordinate	

See: A. Drezet et al., J. Appl. Phys. 115, 093105 (2014)	
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For instance: 
Ohno & Miyanishi Opt. X 14, 6285 (2006) 
Hasman et al., Nano Letters 9, 3016 (2009)	

□ Spin-orbit coupling 



Chiral	plasmons	for	singular	op.cs	

m	=	5	m	=	-	1	

Generating Bessel beams 
with fixed OAM 

2

FIG. 1: Calculated near-field distributions on top of a left-handed L1 spiral with m = −1. (a) and (b) are the field distributions
for σ+ and for σ

−
incident polarizations respectively. (c) and (d) are the associated phase distributions. (e) and (f) are cross-

section of the near-field amplitudes for σ+ and for σ
−

illuminations (solid lines) compared with the ρn ≫ ρ0 approximation
that leads to J0(kspρ0) and J2(kspρ0) Bessel profiles respectively (dashed lines).

WAVEGUIDE MODES, OVERLAP INTEGRAL AND HOLE TRANSMISSION MATRIX

Modes inside a hole of radius ρh and symmetry axis along the z direction are classified into transverse electric (TE)
and transverse magnetic (TM) modes. The associated fields Ewg(ρ, z) are simply derived from a scalar potential
ψ(ρ, z). Given the symmetry of the problem, a multipolar expansion of this potential can be given as ψ(ρ, z) ∝
∑

ℓ≥0

∑

n≥1 ψℓn(ρ)eiκℓnz with ψℓn(ρ) = Jℓ (kℓnρ) e±iℓϕ where Jℓ is the ℓ-order Bessel function of the first kind [1].

Here κ2ℓn = k2ℓn−k2 is the waveguide propagation wavevector and k = 2π/λ0 the wavevector of light. The eigenvalues
kℓn are determined from boundary conditions (assuming a perfect conductor [2]) as kℓn = xℓn/ρh where xℓn is the
nth roots of Jℓ (x) = 0 for a TM mode and ∂xJℓ (x) = 0 for a TE mode. There is a lowest (cutoff) value kcℓn of k
for which κℓn is real, i.e. for which the field can propagate through the hole as the ℓn waveguide mode. At a fixed
illumination wavelength λ0, this corresponds to cutoff hole diameters given by dcℓn = xℓnλ0/π.

The ℓn waveguide mode is one term Jℓ (kℓnρ) e±iℓϕeiκℓnz of the expansion. For the associated field E
wg
ℓn (ρ, z) =

∑

i=1,2 êiE
wg
i (ρ)eiκℓnz with ê1,2 = (ρ̂, ϕ̂), this leads, both for TE and TM polarizations, to a separation between radial

and angular variables as Ewg
i (ρ) = Êwg

i (ρ)e±iℓϕ. As discussed in the main text, this shows that each ℓn waveguide
mode is carrying an angular momentum ±ℓ: from the fundamental mode TE11 with ℓ = 1, to the higher modes TM01,
TE21, etc., with respectively ℓ = 0, ℓ = 2, etc. This scaling corresponds to OAM cutoff conditions, just as the choice
of the cutoff diameter dcℓn selects the ℓn mode.

In this context, the first step is to quantify the excitation efficiency of the waveguide modes inside the aperture by the
incoming field. This efficiency is determined by an overlap integral Onℓℓ′ =

∫

hole dρ E
wg
ℓn

⋆(ρ, z = 0+) ·Eexc
ℓ′ (ρ, z = 0+)

between the in-plane components of the guidedE
wg
ℓn field and the excitationEexc

ℓ′ field at the front-side of the membrane,
integral performed over the hole. The excitation field can either be Ein

± or the SP field launched by the grooves with
ESP = Cin(m) · Ein

± . In the former case, because Ein
z = 0, only a TE11 mode is excited, dominating the transmission

because of the propagation phase eiκℓnh [3].
At this point, it is essential to refer explicitely to the angular momentum ℓ′ carried by the excitation field which,

for Ein
± , is determined by the spin of light ℓ′σ = ±1 and for ESP by the spin-orbit coupling in the near field with

ℓ′SP = m± 1, as shown in Eq.(1) of the main text. Through the angular integration, the separation of variables leads



+	

+	

-	

-	
6 8 

4 6 

laser 

HWP QWP MO 

CCD 

Front-side:	L1	 Back-side:	R5	

OAM	transfer	from	near-field	chirality	
suspended	membrane	(h=300	nm)	

2 µm 

Gorodetski et al., PRL 110, 203906 (2013) 



Spin-orbit	coupling	in	nano	op.cs	
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dispersions. As a reference, we measured the inten-
sity dispersions of the q = 0 structure at ϕ = 30°,
verifying the standard momentum-matching cal-
culation without the geometric Rashba correction.
Note that this direction is arbitrary because this
structure is IS in all directions; however, it is a
specific IS direction in the

ffiffiffi
3

p
!

ffiffiffi
3

p
structure. In

accordance with this condition, we did not observe
any spin dependence in the measured

ffiffiffi
3

p
!

ffiffiffi
3

p

spin-projected dispersion at this direction. This re-
sult is supported by the SOMM condition (Fig.

3D), which is general because it distinguishes
between the IS and IaS directions and tailors a
spin-degenerated or spin-dependent output, respec-
tively, and it reveals new modes observed in theffiffiffi
3

p
!

ffiffiffi
3

p
intensity dispersion (Fig. 3C) owing to

the spin-dependent geometric Rashba correction.
The spin degeneracy removal was also shown

in the near-field associated with the orbital an-
gular momentum variation along the IaS di-
rections. We revealed a chain of vortices with
alternating helicities in the artificial

ffiffiffi
3

p
!

ffiffiffi
3

p

building blocks, carrying a spin-dependent space-
variant orbital angular momentum arising from
the spiral phase front of the SPPs [see (24) for
the detailed analysis]. The reported spin-based
phenomena in the near- and far-fields inspire the
development of a unified theory to establish a
link between the spin-controlled radiative modes
and the metasurface symmetry properties to en-
compass a broader class of metastructures from
periodic to quasi-periodic or aperiodic. The de-
sign of metamaterial symmetries via geometric
gradients provides a route for integrated nanoscale
spintronic spin-optical devices based on spin-
controlled manipulation of spontaneous emission,
absorption, scattering, and surface-wave excitation.
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Fig. 3. Symmetryanalysis
byspin-projectedmeasure-
ments. (A and B) Measured
S3 dispersions of the

ffiffiffi
3

p
!ffiffiffi

3
p

structure with varying ϕ
at q = 12° and –12°, respec-
tively. The inset highlights
the IS directions. (C and D)
Measured and calculated
intensity dispersions of theffiffiffi
3

p
!

ffiffiffi
3

p
structure along

an IS direction of ϕ = 30°,
respectively. The standard
momentum-matching and
the SOMM calculations in
(D) are denoted by the yellow
and green lines, respectively.

Fig. 2. Spin-orbitmomentum-
matching and surface-wave
control. (A and B) Calcu-
lated S3 dispersions of theffiffiffi
3

p
!

ffiffiffi
3

p
structure at ϕ =

0° and 60°, respectively, via
the SOMM condition. Red and
blue lines correspond to s+
and s– spin states, respective-
ly. (Inset) Reciprocal space of
q = 0 (yellow) and

ffiffiffi
3

p
!

ffiffiffi
3

p

(blue) structures with the cor-
responding reciprocal vectors.
The dashed blue arrow in-
dicates that only one of theffiffiffi
3

p
!

ffiffiffi
3

p
reciprocal vectors

is required to set the disper-
sion of a spin-optical meta-
material, in addition to both
of the q = 0 reciprocal vec-
tors. (C andD) Spin-controlled
surface-wave concept. The
scheme introduces the cou-
pling of the two spin-dependent
modes depicted in (A) to
surface-wave modes via the
degree of freedoms of w,
kjjin, and s; k

jj
in is the compo-

nent of the incident wave
vector kin parallel to the surface. (E and F) Vector summation representation of the SOMM condition
forecasting the direction of the surface wave for the aforementioned modes.
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Figure 2 | PSHE and SPP scattering by a spherical nanoparticle. (a) Schematic of the direct PSHE experiment. (b) The intensity of the SPPs excited in
opposite directions for a full set of incident polarization states from RCP through linear p-polarized to LCP. (c) Schematic of the reciprocal experiment.
(d) The dependence of the intensity of the directionally scattered light on the polarizer orientation for two orthogonal quarter-waveplate orientations
(marked as ‘þ45’ and ‘–45’). For all measurements, the 60-nm-diameter Au nanoparticle is placed on the 50-nm-Au film on glass substrate. The
illumination light wavelength is 632.8 nm. (e) The wavevector spectrum (top row) and corresponding real space intensity distribution (bottom row) of the
SPP waves excited with LCP, linear p-polarized and RCP illuminating light (the snapshots from Supplementary Movie 2).
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Figure 3 | SPP scattering by slits in a metal film. (a) Schematic of the SPP scattering measurements on a slit and a slit grating. (b) The dependence of the
intensity of the scattered light on linear analyser orientation for the individual single slit with width 130 nm and length 20 mm (top), and diffraction
grating consisting of a 1D array of slits with a slit width, length and periodicity of 500 nm, and 20 and 3mm, respectively (bottom). The slits have been
fabricated in a 50-nm-gold thin film. The observed diffraction pattern averaged over all analyser angles is shown on the left.
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Plasmonic	vor.ces	and	orbi.ng	mo.ons	

□ Trapping microparticles at primary rings of plasmonic vortices	

•  Orbiting motions	

See: Tsai et al., Nano Letters 14, 547 (2014)  	



□ Lorentz law (real   fields)	

Op.cal	force	and	torque	on	an	electric	dipole	

•  linear polarization	

□ Time-averaged force	

•  general polarization case	

Stenholm, RMP (1986) 
Hemmerich & Hänsch, PRL (1992) 



Radia.on	pressure	and	orbital	energy	flow	

□ Time-averaged Poynting vector	

□ Time-averaged radiation pressure	 □ Time-independent torque	

Electric ellipticity	

Mechanical energy transfers through dissipation	

Canaguier et al., PRA 88, 033831 (2013)	



«	Electric-magne.c	democraty	»	(M.V.	Berry)	

□ Lorentz law for a magnetic dipole	

□ Harmonic fields and induced dipole 	

□ Dual symmetric expressions	



Spin	and	orbital	angular	momentum	densi.es	

x 

y 

Γ	

F	

ΠS 

ΠΟ	

Π	

z 

S	

□ Orbital angular momentum (time ave.)	

□ Spin angular momentum	

Berry, J. Opt. A (2009) 
Bliokh, et al. NJP (2014) 

•  intrinsic 
•  no specified direction w.r.t. wave momentum 	

•  extrinsic 
•  transverse w.r.t. wave momentum 	

•  Longitudinal electric field component 
(TM polarized) 

  

•  Transverse polarization	

Ez	 Γ	

S	
S	S	



Transverse	spin	densi.es	and	structures	light	fields	

□ Evanescent waves 

□ Non-paraxial fields	

□ Surface plasmon modes 

component of the spin density (circular polarization) in
paraxial light beams [2,24]. In fact, all three components
of the spin density are proportional to the respective 3D
Stokes parameters defined in Refs. [25–27]. Alongside the
transverse spin density, we experimentally investigate the
electric contribution to BSMD generated by the curl of
the electric spin density, ps;E ∝ ∇ × sE. The longitudinal
component of ps;E is therefore given by

pz
s;E ∝ ð∂xs

y
E − ∂ysxEÞ: ð3Þ

In the upcoming paragraph, we showhow the distributions of
sxE and syE in the focal plane of a high numerical aperture
focusing system can be determined via a nanoprobe scanning
measurement, which also permits the calculation of pz

s;E.
Experimental concept.—Our experiment is based on

probing the tightly focused electric fields with a dipolelike
plasmonic scatterer. Position-dependent transversely spin-
ning electric fields induce a transversely spinning dipole
moment, which can result in directional far-field emission
[see Fig. 1(a)] [10,14,28]. Measuring the emission direc-
tionality for each position of the field probe allows us to
reconstruct the transverse spin density. In the following, we
describe the underlying theoretical concept and, therefore,
briefly discuss the directional far-field emission of a
transversely spinning dipole sitting on an interface.
If a dipole is in close proximity to a second dielectric

medium with a higher refractive index (here: glass,
n ¼ 1.5), the evanescent near fields of the dipole in the
optically less-dense medium can be partially converted into
propagating waves at the interface [29]. Those propagating
waves can then be observed in the far field, in particular, in
the region above the critical angle indicated by the red arcs
in Fig. 1(a). The critical angle itself is outlined by the
dashed black line and corresponds to a numerical aperture
of 1. The interface between both dielectric media can be
considered planar with the surface normal z pointing into
the glass half-space. For the chosen Cartesian coordinates
(see Fig. 1), the region above the critical angle is defined by
k⊥=k0 ¼ NA ∈ ½1; 1.5%, with the transverse wave number
k⊥ ¼ ðk2x þ k2yÞ−1=2 and the wave number in vacuum
k0 ¼ ω=c0. The intensity emitted into the far field consists
of two polarization components: the transverse magnetic
(TM) and transverse electric (TE) components,

Iðkx; kyÞ ∝ jETMj2 þ jETEj2: ð4Þ

Considering only one specific transverse wave number
above the critical angle, k⊥ ¼ k0⊥, which implies the
restriction to a ring around the optical axis of the system
in k-space, we can obtain a simplified expression for the
far-field intensity [10],

jETMj2 ∝
!!!!
ιjkzjkx
jkjk0⊥

qx þ
ιjkzjky
jkjk0⊥

qy −
k0⊥
jkj

qz

!!!!
2

; ð5aÞ

jETEj2 ∝
!!!! −

ky
k0⊥

qx þ
kx
k0⊥

qy

!!!!
2

: ð5bÞ

The components of the electric dipole moment q ¼
ðqx; qy; qzÞ have herein complex values, and the longi-
tudinal component of the k-vector is defined by
kz ¼ ½k20 − k02⊥%1=2, which results in kz ¼ ιjkzj in the angular
regime above the critical angle.
As can be seen from Eq. (5b), the transverse electric

component jETEj2 is always symmetric with respect to the
z axis. In contrast, the transverse magnetic component
jETMj2 defined in Eq. (5a) can be asymmetric (directional),
because of the interference of the longitudinal dipole
moment with the transverse dipole moments [10,14,28].
By comparing the intensity scattered into opposite direc-
tions along the x and y axis, ΔIx ¼ Ið0;−k0⊥Þ − Ið0; k0⊥Þ
and ΔIy ¼ Iðk0⊥; 0Þ − Ið−k0⊥; 0Þ, we obtain as a result a
simple measure for the directionality,

FIG. 1 (color). Experimental concept, setup, and far-field
detection scheme. (a) A transversely spinning dipole (here:
counterclockwise spinning denoted by the black arrow in the
inset) in close proximity to a dielectric interface has a directional
emission pattern (green line) into the region above the critical
angle (red arc). The actual critical angle is indicated by the dashed
black line at the numerical aperture (NA) equal to 1. (b) An
incoming (here: radially or linearly polarized) paraxial beam is
tightly focused onto a gold nanoparticle (radius ¼ 40 nm) sitting
on a glass substrate. The light emitted by the dipole into the
region above the critical angle (NA > 1) can be collected up to
a NA of 1.3 by the immersion-type objective. An exemplarily
measured far-field pattern of a transversely spinning dipole is
depicted in (c). Only the light scattered by the particle is detected
above the critical angle. Averaging the intensity in four small
regions in k-space (white circles) yields four intensity values
(I1,I2,I3, and I4).

PRL 114, 063901 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
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063901-2

Neugbauer et al., PRL 114, 063901 (2015)	

Petersen et al., Science 346, 67 (2014)	
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Figure 2 | PSHE and SPP scattering by a spherical nanoparticle. (a) Schematic of the direct PSHE experiment. (b) The intensity of the SPPs excited in
opposite directions for a full set of incident polarization states from RCP through linear p-polarized to LCP. (c) Schematic of the reciprocal experiment.
(d) The dependence of the intensity of the directionally scattered light on the polarizer orientation for two orthogonal quarter-waveplate orientations
(marked as ‘þ45’ and ‘–45’). For all measurements, the 60-nm-diameter Au nanoparticle is placed on the 50-nm-Au film on glass substrate. The
illumination light wavelength is 632.8 nm. (e) The wavevector spectrum (top row) and corresponding real space intensity distribution (bottom row) of the
SPP waves excited with LCP, linear p-polarized and RCP illuminating light (the snapshots from Supplementary Movie 2).
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Figure 3 | SPP scattering by slits in a metal film. (a) Schematic of the SPP scattering measurements on a slit and a slit grating. (b) The dependence of the
intensity of the scattered light on linear analyser orientation for the individual single slit with width 130 nm and length 20 mm (top), and diffraction
grating consisting of a 1D array of slits with a slit width, length and periodicity of 500 nm, and 20 and 3mm, respectively (bottom). The slits have been
fabricated in a 50-nm-gold thin film. The observed diffraction pattern averaged over all analyser angles is shown on the left.
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□ Poynting vector	

Surface	plasmons	as	spinning	near	fields	

□ Surface plasmons	

ΠS 
ΠΟ	

Π	

orbital	 spin part	

Canaguier-Durand & Genet, PRA 88, 033831 (2013)	

□ Transverse spin density	



Surface	plasmon	forces	and	torque	

□ SP gradient force	
Freac	

Fdissip	

□ SP torque and transverse spin	

x 

y 

Γ	

S	

z 

□ SP radiation pressure	

Confined   and directed motion 

See also: Bliokh and Nori, PRA (2012) 
Aiello & Banzer, arXiv 2015	Canaguier-Durand & Genet, PRA 89, 033841 (2014)	



Quidant	et	al.,	Nature	Phys.	2007 

Grigorenko et al. Nature Photon. 2008 

« Localized » surface plasmon resonances 
□ Delocalized plasmons ? 

See	review	Juan,	Righini,	Quidant	Nature	Photon.	2011	

Cuche et al. PRL 2011 

Surface	plasmon-based	op.cal	tweezers	



k in

Plasmonic	radia.on	pressure	and	band	structures	

□ Global energy transport	

Bliokh et al., PRA (2012)	

Gra.ng	Flat	

kSP	

kx	

ky	

□ Local anisotropy of plasmonic isofrequency surface	

k in



Plasmonic	beam	steering	

kx

k y

PG	

SP source	

kSP,in	

kSP,out	

50	μm	

B. Stein et al., PRL 105, 266804 (2010)	

Negative refraction	



ω	(k)	

k||,in	

1

θin	

2

vg	

θout	

ky	

kx	

Dissipa.ve	plasmonic	force:	Bloch	wave	mo.onal	control	

□ IFS desing as a tool for controlling nanoparticle motions	

2

1 SP mode on flat film	

SP Bloch mode	
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Dynamical	law	of	refrac.on	

□ nanoparticle eq. of motion	

□ time-averaged ballistic motion	

•  motional evolutions determined 
in strict relation with the IFS	

•  mechanical analogues of super-prism 
and negative refraction effects 

•  high throughputs with high angular resolution 

A. Cuche et al., Nano Letters 12, 4329 (2012)	



Chirality	

Lord Kelvin (1884) : « I call any geometrical figure, or group of points, 
chiral, and say that it has chirality, if its image in a plane mirror,  ideally 
realized, cannot be brought to coincide with itself. » 

JR = ¦JL¦
¡1

=

Ã
A C
B D

!

JL =

Ã
A B
C D

!

Planar chirality with no rotational invariance

asymmetric transmission

[R;J] 6= 0

[¦; J] 6= 0

jBj 6= jCj

ReciprocityChirality

B 6=0;C 6=0

A= D

right (R) left (L) 



Chiral	dipole	

JR = ¦JL¦
¡1

=

Ã
A C
B D

!

JL =

Ã
A B
C D

!

Planar chirality with no rotational invariance

asymmetric transmission

[R;J] 6= 0

[¦; J] 6= 0

jBj 6= jCj

ReciprocityChirality

B 6=0;C 6=0

A= D

□ Coupled induced dipoles	



Op.cal	force	and	torque	on	a	chiral	dipole	

□ Lorentz law (real   fields)	

□ Time-averaged force and torque	

Canaguier et al., NJP 15, 123037 (2013)	



Chiral	force	on	a	chiral	dipole	

□ Chiral part	

See also: Cameron, Barnett, Yao, NJP (2014)	

Reactive component: 	

Dissipative component: 	

•  Enantioselective forces: chiral separation	

•  Field chiral quantities	



Op.cal	chirality	

Density 

Flow 

Cons. 

□ Free-field conservation:	

□ Harmonic fields	

Lipkin (1964)  
Tang and Cohen (2010)  
Bliokh and Nori (2011) 
Barnett et al. NJP (2012)	

Energy and momentum 

□ Circularly polarized light	



Chiral	separa.on	

□ Tkachenko and Brasselet, LOMA, Bordeaux	

shown in Fig. 2e corresponds to the circular Bragg reflection
phenomenon, which is a generic optical property of cholesteric
liquid crystals24. It refers to the fact that the propagation of light
in one of the two circular polarization states along the cholesteric
helical axis is forbidden over a well-defined wavelength range
Dl¼ p(n8" n>) centred on the Bragg wavelength lB¼ np where
n¼ (n8" n>)/2 is the average refractive index of the cholesteric
with n8,> the refractive indices parallel and perpendicular to n.
By deliberately choosing Bragg cholesteric droplets, enhanced
optomechanical separation of droplets having opposite chirality is
achieved at relatively low optical power due to helicity-dependent
optical radiation pressure exerted on the droplets25.

Experimental proof-of-principle. The experimental demonstra-
tion of optical chiral sorting is illustrated in Fig. 3, where panels
2a–c depict the light–matter interaction geometry, whereas panels
2d-f compile snapshots of the droplet dynamics for Lw¼ " 1,

w¼ 0 and Lw¼ þ 1, respectively, where w¼ 0 refers to the
control experiment with a non-chiral radially ordered droplet.
Due to the bounded nature of the light beams, a chiral
droplet experiences a finite displacement along z, namely Dz¼
zþN" z"N, as depicted in Fig. 3d,f. Here z±N refers to the
z coordinate of the droplet centre of mass at time t¼ t±N, with
t¼ 0 when the droplet crosses the beam axis at x¼ 0. In contrast,
a non-chiral radial nematic droplet is not deviated while passing
across the beams, as shown in Fig. 3e. Clearly, the fact that Dz is
proportional to Lw demonstrates the possibility to sort objects
with different chirality by chiral light.

Importantly, optofluidic chiral sorting is not restricted to
resonant chiral interaction as is the case for Bragg chiral droplets.
Indeed it works for non-Bragg radial cholesteric droplets as well.
This is demonstrated in Fig. 4 that presents the case of left- and
right-handed radial cholesteric droplets with pE2 mm (see
Methods for details). Such droplets indeed do not exhibit circular
Bragg reflection phenomenon as demonstrated by comparing the
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20 µm20 µm

Figure 2 | Chiral and non-chiral liquid crystal radial droplets used in the present study. (a,b) Sketches of the director field for the chiral (cholesteric)
and non-chiral (nematic) liquid crystal radial droplets that have been used in the present study, where the double arrow for the director refers to the
equivalence of n and " n. (c,f) Images of the droplets viewed between crossed linear polarizers (XPOL), where the fourfold patterns characterize
the overall radial ordering of the droplets and the dashed circles refer to the contour of the droplets. (d,g) Images of the droplets under left-handed
circularly polarized (LHCP) illumination. ( e,h) Images of the droplets under right-handed circularly polarized (RHCP) illumination. Illumination wavelength:
532 nm. Scale bar: 20mm (c–h).
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Figure 3 | Optical sorting of droplets with different chirality. (a,b,c) Different light–matter interaction geometries, where two kinds of contributions to the
net optical force F are identified for Bragg chiral droplets: red arrows refer to the ‘Bragg optical rays’ that are considered to be totally reflected due to
circular Bragg reflection over a circular cross-section of radius RB (visualized in Fig. 2e), whereas blue arrows refer to the ‘Fresnel optical rays’ that are
considered to be refracted/reflected on the droplet as is the case for an isotropic non-chiral dielectric sphere. (d–f) Demonstration of passive chiral
optical sorting concept with chiral (d,f) and non-chiral (e) droplets that pass perpendicularly through the beams at a constant velocity V0 along the
x axis. The pictures are obtained by superimposing snapshots taken at a discrete set of time. Only chiral droplets experience a non-zero deviation Dz
along the z axis that is proportional to Lw, where w¼0 refers to non-chiral medium and w¼±1 to right/left-handed chiral media. Parameters: beam power
is P¼ 170 mW, beam waist w0E50mm, driving velocity is V0¼ 12mm s" 1. Scale bar: 30mm (d–f).
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shown in Fig. 2e corresponds to the circular Bragg reflection
phenomenon, which is a generic optical property of cholesteric
liquid crystals24. It refers to the fact that the propagation of light
in one of the two circular polarization states along the cholesteric
helical axis is forbidden over a well-defined wavelength range
Dl¼ p(n8" n>) centred on the Bragg wavelength lB¼ np where
n¼ (n8" n>)/2 is the average refractive index of the cholesteric
with n8,> the refractive indices parallel and perpendicular to n.
By deliberately choosing Bragg cholesteric droplets, enhanced
optomechanical separation of droplets having opposite chirality is
achieved at relatively low optical power due to helicity-dependent
optical radiation pressure exerted on the droplets25.

Experimental proof-of-principle. The experimental demonstra-
tion of optical chiral sorting is illustrated in Fig. 3, where panels
2a–c depict the light–matter interaction geometry, whereas panels
2d-f compile snapshots of the droplet dynamics for Lw¼ " 1,

w¼ 0 and Lw¼ þ 1, respectively, where w¼ 0 refers to the
control experiment with a non-chiral radially ordered droplet.
Due to the bounded nature of the light beams, a chiral
droplet experiences a finite displacement along z, namely Dz¼
zþN" z"N, as depicted in Fig. 3d,f. Here z±N refers to the
z coordinate of the droplet centre of mass at time t¼ t±N, with
t¼ 0 when the droplet crosses the beam axis at x¼ 0. In contrast,
a non-chiral radial nematic droplet is not deviated while passing
across the beams, as shown in Fig. 3e. Clearly, the fact that Dz is
proportional to Lw demonstrates the possibility to sort objects
with different chirality by chiral light.

Importantly, optofluidic chiral sorting is not restricted to
resonant chiral interaction as is the case for Bragg chiral droplets.
Indeed it works for non-Bragg radial cholesteric droplets as well.
This is demonstrated in Fig. 4 that presents the case of left- and
right-handed radial cholesteric droplets with pE2 mm (see
Methods for details). Such droplets indeed do not exhibit circular
Bragg reflection phenomenon as demonstrated by comparing the
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Figure 2 | Chiral and non-chiral liquid crystal radial droplets used in the present study. (a,b) Sketches of the director field for the chiral (cholesteric)
and non-chiral (nematic) liquid crystal radial droplets that have been used in the present study, where the double arrow for the director refers to the
equivalence of n and " n. (c,f) Images of the droplets viewed between crossed linear polarizers (XPOL), where the fourfold patterns characterize
the overall radial ordering of the droplets and the dashed circles refer to the contour of the droplets. (d,g) Images of the droplets under left-handed
circularly polarized (LHCP) illumination. ( e,h) Images of the droplets under right-handed circularly polarized (RHCP) illumination. Illumination wavelength:
532 nm. Scale bar: 20mm (c–h).
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Figure 3 | Optical sorting of droplets with different chirality. (a,b,c) Different light–matter interaction geometries, where two kinds of contributions to the
net optical force F are identified for Bragg chiral droplets: red arrows refer to the ‘Bragg optical rays’ that are considered to be totally reflected due to
circular Bragg reflection over a circular cross-section of radius RB (visualized in Fig. 2e), whereas blue arrows refer to the ‘Fresnel optical rays’ that are
considered to be refracted/reflected on the droplet as is the case for an isotropic non-chiral dielectric sphere. (d–f) Demonstration of passive chiral
optical sorting concept with chiral (d,f) and non-chiral (e) droplets that pass perpendicularly through the beams at a constant velocity V0 along the
x axis. The pictures are obtained by superimposing snapshots taken at a discrete set of time. Only chiral droplets experience a non-zero deviation Dz
along the z axis that is proportional to Lw, where w¼0 refers to non-chiral medium and w¼±1 to right/left-handed chiral media. Parameters: beam power
is P¼ 170 mW, beam waist w0E50mm, driving velocity is V0¼ 12mm s" 1. Scale bar: 30mm (d–f).
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radius ~ 20 microns 	

Nat. Commun. (2014)	

□ Downscaling to the nanoscale ? 

ü 		 ü 		



Brownian	approach	

Separation 
 
Brownian motion causes a variance  

□ Cancelling	

Minimal time 	

□ Statistical resolution	

Ca. 1 mm / 1 hour  
50 mW on 1 mm2,  

for DNA-nanoparticle hybrids  
(N. Kotov, JACS 2012) 

Self-Assembly of Chiral Nanoparticle Pyramids with Strong R/S
Optical Activity
Wenjing Yan,†,# Liguang Xu,†,# Chuanlai Xu,†,# Wei Ma,†,§,# Hua Kuang,*,† Libing Wang,*,†,‡
and Nicholas A. Kotov*,§
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ABSTRACT: Chirality at the nanometer scale represents one of the
most rapidly developing areas of research. Self-assembly of DNA−
nanoparticle (NP) hybrids enables geometrically precise assembly of
chiral isomers. The concept of a discrete chiral nanostructure of
tetrahedral shape and topology fabricated from four different NPs
located in the corners of the pyramid is fundamental to the field.
While the first observations of optical activity of mixed pyramidal
assemblies were made in 2009 (Chen, W.; et al. Nano Lett. 2009, 9,
2153−2159), further studies are difficult without finely resolved
optical data for precisely organized NP pyramidal enantiomers. Here
we describe the preparation of a family of self-assembled chiral pyramids made from multiple metal and/or semiconductor NPs
with a yield as high as 80%. Purposefully made R- and S-enantiomers of chiral pyramids with four different NPs from three
different materials displayed strong chiroptical activity, with anisotropy g-factors as high as 1.9 × 10−2 in the visible spectral range.
Importantly, all NP constituents contribute to the chiroptical activity of the R/S pyramids. We were able to observe three
different circular dichroism signals in the range of 350−550 nm simultaneously. They correspond to the plasmonic oscillations of
gold, silver, and bandgap transitions of quantum dots. Tunability of chiroptical bands related to these transitions is essential from
fundamental and practical points of view. The predictability of optical properties of pyramids, the simplicity of their self-assembly
in comparison with lithography, and the possibility for polymerase chain reaction-based automation of their synthesis are
expected to facilitate their future applications.

■ INTRODUCTION
Chirality determines many structure−function relationships in
Nature1,2 at many levels of biological organization. Such
omnipresence of chiral properties in biology inspires and
necessitates further studies of chirality of nanoscale materials
due to many structural parallels between nano- and biomaterials
as well as multiple biomedical applications of nanoparticles
(NPs). Despite some important advances in this area discussed
below, we are still far from their systematic understanding and
utilization. The technologies where chiral nanomaterials could
find direct applications span the range from drug delivery to
optical devices utilizing negative refraction phenomena.
Chirality of biological objects can be traced to the tetrahedral

geometry of sp3-hybridized carbon with four different
substituents. While similar origin of chirality is possible for
NPs,3 dominant mechanisms by which the nanostructures can
acquire chiral properties are, so far, different. Organic molecules
with chiral orbitals can become hybridized and thereby “share”
this property with non-chiral electronic states on the NP
surface.4,5 Such mechanism can be traced for many inorganic
NPs,3,6−15 nanotubes,16,17 and nanorods (NRs).18,19 Imprinting

chiral electronic structure of organic molecules on inorganic
NPs can be particularly strong for plasmonic nanostructures as
compared to semiconductor ones. Their chirality can manifest
as strong optical activity in the plasmonic region and as
enhancement of the intrinsic chirality of organic molecules
localized in plasmonic gaps. At the same time, intrinsically
chiral nanostructures regardless should give much stronger
optical activity, as could be seen from the original findings in
chiral assemblies21 and a very recent publication on this subject
regarding individual NPs.20 Plasmonic NPs were also the
subject of the early papers on configurational chirality at the
nanoscale related to the geometrical disposition of non-chiral
NPs,21,22 which was later extended to helical arrangements of
NRs10 and NPs,23−25 and tetrahedral arrangements of nano-
scale disks.26 Compared with chirality from individual NPs, the
collective chirality generated from NP assemblies is likely to
give significantly higher anisotropy coefficients, g, in the visible
range, as was suggested by both experimental26 and theoretical
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Mechanical separation of chiral dipoles by chiral light. 10

unambiguously the motional e↵ect induced by the chiral force acting on the enantiomers

against their Brownian motion. For t > tmin, the enantiomers are well separated with

displacement distributions clearly shifted from each other.

If small chiral molecules display mixed polarizability � in the visible range that are

too faint to give a reasonable separation time t in water at room temperature [53], the

situation is very di↵erent at the level of specifically tailored molecular assemblies [54]

or manufactured submicrosystems [55]. Metal-based chiral metamaterial systems have

displayed surprisingly strong gyrotropic e↵ects, with “Swiss-roll”-like structures yielding

� ⇠ ↵ [56]. Examples of DNA-nanoparticle (NP) hybrids in particular give high chirality

strengths with typical Im[c�] ⇠ 10�24 m3 [57]. This leads to chiral forces as strong as⌦
Fd.

�

↵
⇠ 3⇥ 10�16 N in typical experimental conditions, well within experimental reach

[58]. In water, at room temperature, we estimated tmin ⇠ 103 seconds above which

the enantiomers are easily separated up to ca. 1 mm. This clearly demonstrates the

feasibility to mechanically separate chiral objets from a chiral dissipative force given in

Eq. (16).
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Figure 2. Demonstration of a separation e↵ect based on the dissipative chiral force⌦
Fd.

�

↵
acting on a racemic mixture, in the context of Brownian motion. The ballistic

shift µ(t) = 3 ⇥ 10�7 · t and the stochastic variance �(t) = 2 ⇥ 10�6 ·
p

t lead to a
separation distance of about 1 mm in ca. one hour [58]. Insert: schematics of the
optical configuration and orientations with respect to the cell enclosing the racemate.

Conclusion

These results unveil chiral forces that stem directly from the chiral properties of the

light-matter interaction. We believe that our dipolar approach is actually well suited

both to experimentalists and theoreticians, as it gives directly access to the physical

Cuche et al., Nano Letters 12, 4329 (2012)	

Canaguier et al., NJP 15, 123037 (2013)	
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two SPs are propagating along the x and y directions and
are intersecting perpendicularly to each other. The resulting
near field in the upper dielectric medium then writes as the
superposition of the two generic SPs:

E0 = eıqz(q̃E1e
ıkx, − q̃E2e

ıky,k̃(E2e
ıky − E1e

ıkx))t ,

H0 = eıqz(H2e
ıky,H1e

ıkx,0)t , (8)

where the complex amplitudes of the two SPs are related
through H1 =

√
n2ε0/µ0E1 and H2 =

√
n2ε0/µ0E2. For sim-

plicity, we label the intensities of the uncoupled SP fields as
E1H

∗
1 = I1,E2H

∗
2 = I2 and of the coupled fields as E1H

∗
2 =

H1E
∗
2 = I1,2e

ıθ , θ being the fixed phase difference between
the two surface plasmons at the origin.

The presence, in the interference process, of a coupling term
between the fields of the two intersecting SPs leads to the first
important result that the chirality density K(r) associated with
the plasmonic optical lattice is nonzero and inhomogeneous.
It can be evaluated directly from Eq. (3) as

K(r) = ωI1,2

c2
e−k′′(x+y)−2q ′′zq̃ ′ sin φ, (9)

where φ(x,y) = k′(x − y) + θ is the local phase difference
between the two waves.

As a consequence, a reactive chiral force is induced [first
term in Eq. (6)] at the level of which the normalized chiral
density K(r)c/ω can be interpreted as a genuine potential
energy density which pushes the chiral dipole towards areas
where K is maximized or minimized, depending on the sign
of Re[cχ ]. On the z = 0 plane, for instance, the sin φ =
sin[k′(x − y) + θ ] term has identical values along lines y =
x − a with a a real constant, as illustrated in Fig. 2(a).
Keeping in mind that q̃ ′ < 0 for a metal-dielectric interface,
K will be minimized for lines L−

p along which sin φ = 1
(k′a + θ = π

2 + 2pπ , p an integer), and maximized for lines
L+

p along which sin φ = −1 (k′a + θ = −π
2 + 2pπ ). This is

presented in Fig. 2(a) with dashed and solid lines, respectively.
The density modulation is superimposed to the long-range
amplitude decrease for increasing values of (x + y) due to the
plasmonic damping factor e−k′′(x+y) in Eq. (9), not discernible
in Fig. 2 because the chosen wavelength λ = 780 nm yields a
too small damping.

The second central outcome is related to the chirality
flow ! which can be obtained directly from Eq. (4) and
reads as a superposition ! = !1 + !2 + !12 of the chirality
flow associated with each SP and of a coupling between the
two SP modes. From Eq. (7), we have !1 = I1((x,z)ŷ and
!2 = −I2((y,z)x̂. The coupling term,

!12 = ωI1,2

2c
e−k′′(x+y)−2q ′′z

⎛

⎜⎝
Im[k̃q̃∗eıφ]

Im[k̃∗q̃eıφ]

(1 + |q̃|2) sin φ

⎞

⎟⎠ , (10)

surprisingly has a nonzero component in the z direction in
which the first factor comes from a magnetic ellipticity induced
by the coherent superposition. Importantly, too, the direction
of this component of the chirality flow oscillates as a function
of the local phase difference φ between the two waves. At
this stage, these properties remain both for propagative waves,
taking real k and q wave vectors, and for a purely evanescent
field with real k but pure imaginary transverse wave vector q.
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FIG. 2. (Color online) (a) Density of chirality K(r) as a function
of position (x,y) on top of the metallic layer (z = 0), normalized by
ωI1,2/c

2. The chirality density is minimized along lines L−
p (dashed

white lines) and maximized along lines L+
p (solid white lines). The

reactive chiral force defined from the gradient of K(r) will essentially
be directed perpendicularly to the L±

p lines. (b) Direction and relative
amplitude of the x and y components of the vector field ! − ∇ × "/2
given in Eq. (11), in the z = 0 plane. The lines L±

p are displayed in
red for comparison with (a). Both panels correspond to the scheme
presented in Fig. 1 where two surface plasmons of identical intensities
are launched perpendicularly from each other at a 780-nm wavelength
on a gold-water interface, with no phase difference at the origin, i.e.,
with θ = 0.

In the force perspective, it is clear that the first two terms
!1 and !2 are identically compensated by the curl of the
associated time-averaged Poynting vectors "1 and "2. But
!12 is only altered, and not canceled, by the same curl related
to the SP coupling. We are thus left with

! − ∇ × "

2
= q̃ ′ ωI1,2

2c
e−k′′(x+y)−2q ′′z

⎛

⎜⎝
Im[k̃eıφ]

Im[k̃∗eıφ]
2q̃ ′ sin φ

⎞

⎟⎠ , (11)

which implies that the plasmonic optical lattice does yield
a nonzero dissipative chiral force. The longitudinal x and y
components of this vector field are presented in Fig. 2(b) as
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two SPs are propagating along the x and y directions and
are intersecting perpendicularly to each other. The resulting
near field in the upper dielectric medium then writes as the
superposition of the two generic SPs:

E0 = eıqz(q̃E1e
ıkx, − q̃E2e

ıky,k̃(E2e
ıky − E1e

ıkx))t ,

H0 = eıqz(H2e
ıky,H1e

ıkx,0)t , (8)

where the complex amplitudes of the two SPs are related
through H1 =

√
n2ε0/µ0E1 and H2 =

√
n2ε0/µ0E2. For sim-

plicity, we label the intensities of the uncoupled SP fields as
E1H

∗
1 = I1,E2H

∗
2 = I2 and of the coupled fields as E1H

∗
2 =

H1E
∗
2 = I1,2e

ıθ , θ being the fixed phase difference between
the two surface plasmons at the origin.

The presence, in the interference process, of a coupling term
between the fields of the two intersecting SPs leads to the first
important result that the chirality density K(r) associated with
the plasmonic optical lattice is nonzero and inhomogeneous.
It can be evaluated directly from Eq. (3) as

K(r) = ωI1,2

c2
e−k′′(x+y)−2q ′′zq̃ ′ sin φ, (9)

where φ(x,y) = k′(x − y) + θ is the local phase difference
between the two waves.

As a consequence, a reactive chiral force is induced [first
term in Eq. (6)] at the level of which the normalized chiral
density K(r)c/ω can be interpreted as a genuine potential
energy density which pushes the chiral dipole towards areas
where K is maximized or minimized, depending on the sign
of Re[cχ ]. On the z = 0 plane, for instance, the sin φ =
sin[k′(x − y) + θ ] term has identical values along lines y =
x − a with a a real constant, as illustrated in Fig. 2(a).
Keeping in mind that q̃ ′ < 0 for a metal-dielectric interface,
K will be minimized for lines L−

p along which sin φ = 1
(k′a + θ = π

2 + 2pπ , p an integer), and maximized for lines
L+

p along which sin φ = −1 (k′a + θ = −π
2 + 2pπ ). This is

presented in Fig. 2(a) with dashed and solid lines, respectively.
The density modulation is superimposed to the long-range
amplitude decrease for increasing values of (x + y) due to the
plasmonic damping factor e−k′′(x+y) in Eq. (9), not discernible
in Fig. 2 because the chosen wavelength λ = 780 nm yields a
too small damping.

The second central outcome is related to the chirality
flow ! which can be obtained directly from Eq. (4) and
reads as a superposition ! = !1 + !2 + !12 of the chirality
flow associated with each SP and of a coupling between the
two SP modes. From Eq. (7), we have !1 = I1((x,z)ŷ and
!2 = −I2((y,z)x̂. The coupling term,

!12 = ωI1,2

2c
e−k′′(x+y)−2q ′′z

⎛

⎜⎝
Im[k̃q̃∗eıφ]

Im[k̃∗q̃eıφ]

(1 + |q̃|2) sin φ

⎞

⎟⎠ , (10)

surprisingly has a nonzero component in the z direction in
which the first factor comes from a magnetic ellipticity induced
by the coherent superposition. Importantly, too, the direction
of this component of the chirality flow oscillates as a function
of the local phase difference φ between the two waves. At
this stage, these properties remain both for propagative waves,
taking real k and q wave vectors, and for a purely evanescent
field with real k but pure imaginary transverse wave vector q.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x (µm)

y 
(µ

m
)

(a)

(b)

FIG. 2. (Color online) (a) Density of chirality K(r) as a function
of position (x,y) on top of the metallic layer (z = 0), normalized by
ωI1,2/c

2. The chirality density is minimized along lines L−
p (dashed

white lines) and maximized along lines L+
p (solid white lines). The

reactive chiral force defined from the gradient of K(r) will essentially
be directed perpendicularly to the L±

p lines. (b) Direction and relative
amplitude of the x and y components of the vector field ! − ∇ × "/2
given in Eq. (11), in the z = 0 plane. The lines L±

p are displayed in
red for comparison with (a). Both panels correspond to the scheme
presented in Fig. 1 where two surface plasmons of identical intensities
are launched perpendicularly from each other at a 780-nm wavelength
on a gold-water interface, with no phase difference at the origin, i.e.,
with θ = 0.

In the force perspective, it is clear that the first two terms
!1 and !2 are identically compensated by the curl of the
associated time-averaged Poynting vectors "1 and "2. But
!12 is only altered, and not canceled, by the same curl related
to the SP coupling. We are thus left with

! − ∇ × "

2
= q̃ ′ ωI1,2

2c
e−k′′(x+y)−2q ′′z

⎛

⎜⎝
Im[k̃eıφ]

Im[k̃∗eıφ]
2q̃ ′ sin φ

⎞

⎟⎠ , (11)

which implies that the plasmonic optical lattice does yield
a nonzero dissipative chiral force. The longitudinal x and y
components of this vector field are presented in Fig. 2(b) as
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FIG. 3. (Color online) (a) Gradient of the chirality density in the
z direction, normalized by ω2I1,2/c

3. (b) z component of the vector
field ! − ∇ × "/2 in the z = 0 plane, normalized by ωI1,2/2c. These
patterns correspond to the scheme of orthogonal surface plasmons
involved in Fig. 2. The lines L±

p are presented for comparison with
Fig. 2. Panels (a) and (b) can be quantitatively compared since both
figures are equivalent to a force density normalized by ωI1,2/c

2.

a function of position in the z = 0 plane. It reveals a very
different in-plane dynamics as compared with the reactive
chiral force since the dissipative chiral effects are alternatively
oriented along the L±

p lines, and not perpendicular to as in the
case of the reactive chiral force.

Simultaneously, because of the evanescence of the plas-
monic field in the z direction, the chiral forces have strong
components in the z direction which will lead to verti-
cal chiral forces. Such force components are displayed in
Figs. 3(a) and 3(b), respectively, for the reactive and dissipative
components. Because the z derivative of Eq. (9) leads to a
(−2q ′′) factor, the z component of the reactive chiral optical

force turns out to be opposed to the density of chirality, as easily
seen by comparing Figs. 2(a) and 3(a). The z component of
the dissipative chiral force is shown in Fig. 3(b) and reveals
an identical pattern to the one obtained from the chirality
density gradient. Due to the strong amplitude gradient in the
z direction, the reactive part of the force density presented in
Fig. 3(a) is 20 times larger than the dissipative part presented in
in Fig. 3(b) for the considered wavelength. Nevertheless, when
considering the total chiral force one has to keep in mind that
these force densities are modulated by the real and imaginary
parts of (cχ ) which generally depends on the optical frequency.

Finally, we stress that both quantities presented in Eqs. (9)
and (11) that characterize the two components of the chiral
force are proportional to the real part of the wave vector q. As
an important consequence, an evanescent optical lattice, made
from the intersection of two purely evanescent fields will not
lead to any chiral optical forces. This underlines a fundamental
difference between plasmonic fields and evanescent fields
such as implemented in TIRF-based studies. In particular,
this clearly points to the fact that plasmonic optical lattices
are specifically promising when aiming at deracemization
schemes exploiting chiral near-field forces. The reactive chiral
force landscapes displayed in Figs. 2(a) and 3(a) turn out
particularly appealing for optical chiral separation since each
enantiomer will be pulled down towards the interface (Fz < 0)
within the attractive regions shown in Fig. 2(a) and pushed
away (Fz > 0) over repulsive regions.

V. CONCLUSIONS

We have shown that a near field with a rich optically chiral
near field can be realized by forming a plasmonic optical
lattice with two normally intersecting surface plasmons. In
this configuration, the coupling between the two coherent
surface waves is the source for inhomogeneous optical chirality
and therefore can induce chiral optical forces on chiral
objects. Because the strong amplitude and phase gradients
associated with plasmonic fields have proven to lead to
enhanced momentum transfers in the near field, the generation
of near-field chirality from plasmonic optical lattices opens
promising perspective in the context of chiral manipulation
and separation schemes. This is all the more true given that
the amplitude and sign of both real and imaginary parts of χ
depend on the frequency of the near field thus leading to a great
variety of chiral dynamical effects that can be generated at the
level of such plasmonic optical lattices. Our results therefore
add to the chiroptical toolkit a new class of field excitations in
the form of plasmonic optical lattices.
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Near-field	enhanced	chirop.cal	spectroscopy	

□ Absorption rate of a chiral molecule	

□ Circular dichroism	

Ø  « Super-chiral » fields: localized SP resonances	

of the helix show symmetric distributions of enhanced
optical chirality with respect to each other. More precisely,
the values of optical chirality feature the same magnitude
but opposite sign at corresponding positions. Therefore,
the dissymmetry factor g! [cf. Eq. (6)] can be calculated.

The result is shown in Fig. 3(a) where we plot the
enhancement ĝ! of g! with respect to the value g obtained
for circularly polarized light. This is carried out in the same
way as the calculation of Ĉ [cf. Eq. (4)]. Note that this
factor is not for the single helix, but rather for a combina-
tion of both the left-handed and the right-handed helices as
depicted in Fig. 1. For a real application, one has to cover
symmetric regions of both of these structures with the
chiral sample.

We find a quite complicated distribution of ĝ! that is
different from the one for Ĉ plotted in Fig. 2. This is due to

the contribution of the electric energy density to the dis-
symmetry factor which is also high at locations with strong
optical chirality [cf. Fig. 3(b)]. As the electric-field en-
hancement is much stronger than optical chirality enhance-
ment, the dissymmetry factor is in the end lower than for
circularly polarized light at these positions. However, the
calculation shows that there are regions where also the
dissymmetry factor and therefore the enantioselectivity is
increased. We have reached an enhancement factor of up to
7 for this model configuration. Note that the superstructure
used for this analysis is achiral as it consists of both of
the enantiomers of the chiral plasmonic helix. Therefore,
we expect no chiroptical far-field response in the absence
of chiral molecules, which allows for background-free
measurements.
Of course, this is not a useful configuration for real

sensing applications. Not only is the enhancement too
small, but also the fabrication of the chosen structure is
challenging due to the three-dimensional shape and the
small dimensions. Also, the regions with enhanced enan-
tioselectivity would be difficult to access. Yet, this example
shows that chiral plasmonic nanostructures can indeed
enhance the sensitivity of an enantiomer sensor.
In the following discussion, we will investigate different

structures that overcome these problems. To keep to the
general aim of this work, we decided to restrict our further
analysis to the enhancement of optical chirality and leave
the calculation of the dissymmetry factor to future work.
Our results can be directly used for a simpler detection
scheme in which the rate of excitation for just one incident
polarization is measured directly. This scheme also allows
for a distinction between the two enantiomers of that
molecule due to the change of the sign of ! in Eq. (2).
Our analysis of optical chirality enhancement will also
suit other imaginable applications based on this quantity.
As a consequence of the general approach, it is up to the
readers to adopt our results to the needs of their specific
applications.

B. Planar nanostructures

We start with an analysis of optical chirality enhance-
ment by the gold gammadion structure introduced in
Ref. [15] with respect to enantiomeric sensing. We use
similar dimensions: 80 nm for both the width of the arms
and the gaps, leading to a total width of 400 nm, but a gold
thickness of 20 nm instead of 100 nm. For different sizes of
the nanostructure, we expect the optical chirality to scale
with the electric dipole moment of the particle plasmon,
and hence with the volume of the individual nanoparticles.
The structure is embedded in air. We calculate the fields at
the fundamental plasmon resonance at 2:01 "m.
In contrast to the helix, the gammadion shows a similar

behavior for both LCP and RCP as incident polarizations
(cf. Fig. 4). We calculate enhancement factors for optical
chirality in the range of 20, which is comparable to the

FIG. 2. Optical chirality enhancement for (a) a left-handed
helix with left-handed circularly polarized light and (b) a
right-handed helix with right-handed circularly polarized light
at a wavelength of 2:03 "m. Diameter and height of the helix are
400 nm with a gold thickness of 80 nm. Both combinations show
enhanced optical chirality where the values of maximum and
minimum enhancement are denoted by the black horizontal lines
across the color bars. The regions with enhanced optical chirality
are located at corresponding positions of the respective helix, but
their signs flip. The pictures addressing the polarization state are
taken from the detector’s view; hence, the direction of the arrow
indicates the handedness of the field vectors in space at a fixed
time.

FIG. 3. (a) Enhancement of dissymmetry factor ĝ! near a
plasmonic helix structure with respect to circularly polarized
light. Superchiral light fields with up to 7 times higher enantio-
selectivity could be obtained. This value does not follow the
enhancement of optical chirality directly, as (b) the enhancement
of electric energy density Ûe also enters the calculation. The
electric energy density shows similar distributions as optical
chirality, leading to more complicated shapes of the superchiral
light fields. Note the different scale of the color bar related to the
plot of ĝ! compared to the plots of Ĉ in Fig. 2.
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Fig. 2  Finite element modelling of the local electromagnetic fields around our PCMs. 

(a) Comparison between experimental and modelled CD spectra. (b, c, d) Left hand 

panels: Time averaged electric field strength at the wavelength marked by arrows in 

(a), when excited by LH circularly polarized light. All fields are calculated at the 

substrate interface of the sample and normalized by the incident electric field (E0). 

Right hand panels: Local optical chirality, C, as defined in equation 3, normalized by 

the magnitudes for LH circularly polarized plane waves. 
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Figures: 

 
Fig. 1  Changes induced in the chiral plasmonic resonances of the PCM are readily 

detected using CD spectroscopy (a). CD spectra collected from LH / RH-PCMs 

immersed in distilled water.  The three modes which show the largest sensitivity to 

changes in the local refractive index of the surrounding medium have been labelled I , 

II and III.  Shown to the right of each spectrum is an electron micrograph of the PCM 

displaying the gammadion structure and periodicity. (b) The influence of the adsorbed 

proteins haemoglobin, E-lactoglobulin, and thermally denatured E-lactoglobulin on 

the CD spectra of the PCMs. The red spectra were collected in Tris buffer prior to 

protein adsorption (solid line LH-PCM, dashed line RH-PCM) and the black were 

collected after protein adsorption.  The magnitudes and directions of 'ORH / LH values 

of mode II for E-lactoglobulin adsorption have been highlighed. (c) Haemoglobin 

(upper) and E-lactoglobulin (lower) are shown [D-helix (cyan cylinder) and E-sheet 

(ribbons)], adopting a well defined arbitary structure with respect to a surface.  The 

figure illustrates the more anisotropic nature of adsorbed E-lactoglobulin.   

Near-field chirality density 
 
Localized surface plasmons	

Ultrasensi.ve	detec.on	of	chiral	biomolecules	
E. Hendry et al., Nature Nanotech. 5, 783 (2010)	



Conclusions	

q  Surface plasmons and singular nano-optics 
    
•  New devices (ultra thin phase plates, spin splitters) 

•  Tailoring the far field from singular near fields	

q  Surface plasmons and enhanced chiroptical spectroscopy 
    
•  Inducing chiral densities on nanostructures 

•  Matching chiral length scales light vs. molecules	

q  Surface plasmon optical forces and new effects 
    
•  Coupling chirality of matter to chirality of light 

 
•  New separation schemes based on 


