Plasmonique moléculaire : du facteur de Purcell à la plasmonique quantique

G. Colas des Francs

Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) *CNRS/Université Bourgogne-Franche Comté Dijon - France*

Ecole thématique plasmonique moléculaire et spectroscopies exaltées - Toulouse, 2016

Light/matter interaction at the nanoscale

I] Introduction : motivations and difficulties

II] Plasmonic Purcell factor (classical approach)

1) Delocalized plasmons (SPP)

2) Localized plasmon (LSP)

III] Quantum plasmonics

1) Effective Hamiltonian

2) Strong coupling (emitter-LSP)

Light/matter interaction at the nanoscale

Gaussian beam $A_{eff} = \pi w_0^2$ Absorption cross- σ_a section $C_0 = \frac{\sigma_a}{A_{eff}} \sim 10^{-3}$

Strategies

Low T°C (<10K) $\sigma_a \sim 3\lambda^2/2\pi \sim 10^{-10} \text{ cm}^2$ ($\phi \sim 100 \text{ x}$ molecule size!)

(a) Dipole out off plane (in z)

Paul, Fischer Light absorption by a dipole, Societ Physics Uspekhi **26**, 923 (1983)

Surface enhanced **Cavity quantum** spectroscopies electrodynamics (SERS, SEF) (cQED) $C = 4C_0 - \frac{J}{2}$ σ_{abs} Intensity Round enh. trip Bohren, Huffman, Absorption and Scattering of Light by Small

Absorption and Scattering of Light by Sma Particles, Wiley, New York 1983

Purcell factor

Proceedings of the American Physical Society

Minutes of the Spring Meeting at Cambridge, April 25-27, 1946

B10. Spontaneous Emission Probabilities at Radio Frequencies. E. M. PURCELL, *Harvard University.*—For nuclear magnetic moment transitions at radio frequencies the probability of spontaneous emission, computed from

 $A_{\nu} = (8\pi\nu^2/c^3)h\nu(8\pi^3\mu^2/3h^2)$ sec.⁻¹,

is so small that this process is not effective in bringing a spin system into thermal equilibrium with its surroundings. At 300°K, for $\nu = 10^7$ sec.⁻¹, $\mu = 1$ nuclear magneton, the corresponding relaxation time would be 5×10^{21} seconds! However, for a system coupled to a resonant electrical circuit, the factor $8\pi\nu^2/c^3$ no longer gives correctly the number of radiation oscillators per unit volume, in unit frequency range, there being now one oscillator in the frequency range ν/O associated with the circuit. The spontaneous emission probability is thereby increased, and the relaxation time reduced, by a factor $f = 3Q\lambda^3/4\pi^2 V$, where V is the volume of the resonator. If a is a dimension characteristic of the circuit so that $V \sim a^3$, and if δ is the skin-depth at frequency ν , $f \sim \lambda^3/a^2 \delta$. For a non-resonant circuit $f \sim \lambda^3/a^3$, and for $a < \delta$ it can be shown that $f \sim \lambda^3/a\delta^2$. If small metallic particles, of diameter 10⁻³ cm are mixed with a nuclear-magnetic medium at room temperature, spontaneous emission should establish thermal equilibrium in a time of the order of minutes, for $\nu = 10^7$ sec.⁻¹.

Purcell, 1946

Gérard, Gayral, J. Light. Tech. (1999)

Control of the spontaneous emission – Purcell factor

Micro-optical cavities

Low threshold/thresholdless laser

Fig. 15.14. Light-power-versus-current curves for single spatial-mode emission from a (i) conventional laser, (*ii*) a high β -factor laser, and (*iii*) a thresholdless laser. The conventional laser has a distinct current threshold. The high β-factor laser has a less distinct threshold. It would be noticeable in the spectrum and device modulation speed, however. A hypothetical thresholdless laser would have a β close to 1, and would somehow suppress all other lossy emission until the carrier density required for gain (or at least

A photonic criystal nanocavity with ultralow threshold Nomura, Iwatomoto, Arakawa, SPIE (2007)

Single photon source

Roch, Treussart (ENS Cachan)

Specifications

- Photon energy (wavelength)
- On demand single photon, repetition rate
- Indistinguishable photons

Indistinguishable single photons

Weak and strong coupling regimes

Strong coupling

Coupling strength (g)
>>
losses (
$$\Gamma_0, K_{cav}$$
)

Note : Fabry-Perot cavity

$$C = 4C_0 \frac{\mathcal{F}}{\pi} \qquad F_p = 2C$$

Strong coupling regime

 $2\omega_0$

ω

0

non classical photon states

Strong coupling regime in plasmonics

Localized SPP

Zengi et al, PRL 114, 157401 (2015)

Towards integrated quantum nanophotonics

Cavity quantum electrodynamics (cQED)

Quantum plasmonics (cavity*less QED*)

Duration of interaction (high Q) Volume of interaction (sub-λ)

Derivation of the Purcell factor

Fermi rule (weak coupling regime)

$$\Gamma(\mathbf{r}) = \frac{2\pi}{\hbar^2} \sum_{\mathbf{k}_n} |\langle a, \mathbf{k}_n | H_I | b, 0 \rangle|^2 \delta(\omega_{em} - \omega_{\mathbf{kn}})$$

$$H_I = -\hat{\mathbf{p}} \cdot \hat{\mathbf{E}}(\mathbf{r})$$

$$E_{cav}(\mathbf{r}, t) = i\sqrt{\frac{\hbar\omega_c}{2\varepsilon_0\varepsilon_1 V}} \mathbf{f}(\mathbf{r}) e^{-i\omega_c t} + c.c$$

$$\delta(\omega - \omega_c) \rightarrow N(\omega) = \frac{1}{\pi} \frac{\kappa_{cav}/2}{(\omega - \omega_c)^2 + \kappa_{cav}^2/4}$$

$$N(\omega) = \frac{2Q}{\pi\omega_c} \frac{1}{1 + 4Q^2(\frac{\omega - \omega_c}{\omega_c})^2}$$

$$\frac{\Gamma_{cav}}{n_1 \Gamma_0} = \frac{3}{4\pi^2} \left(\frac{\lambda_{em}}{n_1}\right)^3 \frac{Q}{V} \frac{|\mathbf{u} \cdot \mathbf{f}(\mathbf{r})|^2}{1 + 4Q^2(\frac{\omega - \omega_c}{\omega_c})^2}$$

1D, 2D and 3D Purcell factor

The planar film revisited

Adapted from Barnes, J. Modern Optics (1998)

Decay channels

Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosourcesG. Colas des Francs et al, J. Opt. (accepted, 2016)

Losses

Lorentzian =>
$$\frac{\Gamma_{SPP}}{(lossy metal)} = \frac{\pi}{2} \frac{\mathcal{P}(k_{SPP})}{L_{SPP}}$$

Lossless ideal metal

$$\frac{\Gamma_{\perp}(d)}{n_1\Gamma_0} = \frac{3\pi}{n_1^3} \frac{n_{SPP}^5}{\varepsilon_1 - \varepsilon_2} |\varepsilon_2|^{1/2} e^{-2(\varepsilon_1/|\varepsilon_2|)^{1/2} k_{SPP} d}$$

 $\Gamma_{_{\rm SPP}}$ does not depend on losses (coupling to a mode then propagates with or without losses) High Purcell factor

Overcoming losses – hybrid plateform

Colloidal Quantum Dot Integrated Light Sources for Plasmon Mediated Photonic Waveguide Excitation Weeber *et al,* ACS Phot. **3**, 844 (2016)

Thin film – leaky SPP

Decay channels

$$L_{SPP} = \frac{1}{\alpha_{abs}} + \frac{1}{\alpha_{leak}}$$

 $t_{Au} \sim 50 \text{ nm} \Rightarrow 50 \%$ leakage Detectable using high NA (SPCE)

Comparison between planar and bulk cavities

Single cavity ($L_{cav} = 2 \lambda_{SPP} = 1,1 \mu m$)

Single-molecule controlled emission in planar plasmonic cavities Derom *et al*, Phys. Rev . B **89**, 035401 (2014)

Grating decoupler

Fluorescence enhancement (independent of position)

Extraction efficiency

Spatially uniform enhancement of single quantum dot emission using plasmonic grating decoupler Kumar *et al*, Sci. Rep. **5**, 16796 (2015)

Decay channels

Purcell factor for point-like dipolar emitter coupling to 2D plasmonic waveguides Barthes *et al*, Physical Review B **84** 073403 (2011)

Purcell and β factors

Purcell factor for point-like dipolar emitter coupling to 2D plasmonic waveguides Barthes *et al*, Physical Review B **84** 073403 (2011)

Effect of Joule losses

Purcell factor for point-like dipolar emitter coupling to 2D plasmonic waveguides Barthes *et al*, Physical Review B **84** 073403 (2011)

Mode confinement

SPP nanowire

Photonic waveguide

Plasmonic laser

Plasmon laser at deep subwavelength scale Oulton et al, Nature **461**(2009) 629,

Crystalline Ag wire

Imaging plasmonmodes in penta-twinned crystalline Ag nanowires Song *et al*, ACS Nano **5**, 5874 (2011) *Purcell factor for dipolar emitter coupling to* 2D plasmonic waveguides, Barthes *et al*, Physical Review B **84** 073403 (2011)

Resonant energy transfer

de Torres, Wenger *et al*, ACS Phot. 10, 3968 (2016)

Coupling of a dipolar emitter into one-dimensional surface plasmon, Barthes et al, Sci. Rep. **3**, 2734 (2013)

Localized plasmon (3D)-Purcell factor

Surface enhanced spectroscopies

Perspectives : plasmon nanolaser (SPASER)

localized, coherent and ultra-fast nanosource

Stockman, Nat. Phys. **2**, 327 (2008) Noginov *et al*, Nature **460**, 1110 (2009)

Quality factor of localized SPP

Mie plasmons: quality factors, effective volumes and coupling strength to a dipolar emitter Colas des Francs, Derom, Vincent, Bouhelier, Dereux, Int. J. Optics **2012**, 175162 (2012)

Mode volume definition

con

Near field
confinement
$$V_n^{nrj} = \frac{\int U_n(\mathbf{r}) d\mathbf{r}}{max[\varepsilon_0 \varepsilon_1 | \mathbf{E}_n(\mathbf{r})|^2]},$$

$$U_n(\mathbf{r}) = \frac{\partial [\omega \varepsilon_0 \varepsilon(\mathbf{r}, \omega)]}{\partial \omega} | \mathbf{E}_n(\mathbf{r})|^2 + \mu_0 | \mathbf{H}_n(\mathbf{r})|^2$$
Image: the system of the sys

Far field scattering

Mode volume - quasi-static approximation

Mie plasmons: quality factors, effective volumes and coupling strength to a dipolar emitter Colas des Francs, Derom, Vincent, Bouhelier, Dereux, Int. J. Optics **2012**, 175162 (2012)

Mode confinement – cQED extrapolation

$$V_n^{nrj} = \frac{\int U_n(\mathbf{r}) d\mathbf{r}}{\max[\varepsilon_0 \varepsilon_1 \ |\mathbf{E}_n(\mathbf{r})|^2]},$$
$$U_n(\mathbf{r}) = \frac{\partial [\omega \varepsilon_0 \varepsilon(\mathbf{r}, \omega)]}{\partial \omega} \ |\mathbf{E}_n(\mathbf{r})|^2 + \mu_0 |\mathbf{H}_n(\mathbf{r})|^2$$

Quasi-static approx

Khurgin and Sun JOSA B **26** , B83 (2009)

Complex mode volume – the reconcilation

Quantum plasmonics cQED description

Towards plasmon quantization

Classical description – dipolar scattering

$$\vec{E}(\vec{r}) = \frac{k_0^2}{\varepsilon_0} \bar{G}(\vec{r}, \vec{r_0}, \omega) \cdot \vec{p}$$

$$\varepsilon(\omega)$$

$$=\varepsilon_R + i\varepsilon_I$$

Quantization in an absorbing/dissipative medium – electric-field operator

$$\hat{E}(\vec{r}) = ik_0^2 \sqrt{\frac{\hbar}{\pi \varepsilon_0}}$$

$$\int d\vec{r}' \sqrt{\varepsilon_I} \,\overline{G}(\vec{r},\vec{r}',\omega) \,\hat{f}_{\omega}(\vec{r}')$$

Gruner, Welsch, PRA 53, 3 (1996)

Plasmon resonances

Modal expansion (Mie formalism) $G = G_0 + G_S$

 $G_{s} = \sum G_{s}^{(n)}$

Density of modes $LDOS \propto I m G$

Quantum plasmonics

Mode-selective quantization and easy-to-handle effective cQED models with plasmonic resonance D. Dzsotjan *et al, submitted* (2016)

Strong coupling

Polarization (near field) spectrum

$$P(\omega) = \left\langle \hat{\sigma}_{ge}^{\dagger}(\omega) \hat{\sigma}_{ge}(\omega) \right\rangle$$
$$P(\omega) = \left| \frac{1}{\omega_{eg} - \omega - i\frac{\gamma_d}{2} - \frac{k_0^2}{\hbar\epsilon_0} d_{eg}^2 G_{uu}^{scatt}(\mathbf{r}_d, \mathbf{r}_d, \omega)} \right|^2$$

Effective model – modal analysis

$$\hat{H}_{I} = \begin{bmatrix} \hat{\sigma}_{21} \int_{0}^{+\infty} d\omega \mathbf{d}_{21} \cdot \hat{\mathbf{E}}(\mathbf{r}_{d}, \omega) + H.c. \end{bmatrix}$$

$$\hat{H}_{I} = i\hbar \int_{0}^{+\infty} d\omega \sum_{n=1}^{N} (\kappa_{n}^{*}(\omega) \hat{b}_{\omega,n}^{\dagger} \hat{\sigma}_{12} - (\kappa_{n}(\omega)) \hat{b}_{\omega,n} \hat{\sigma}_{21})$$

$$\hat{\mathbf{E}}(\mathbf{r}, \omega) = i\sqrt{\frac{\hbar}{\pi\epsilon_{0}}} \frac{\omega^{2}}{c^{2}} \int d\mathbf{r}' \sqrt{\epsilon_{I}(\mathbf{r}', \omega)} \mathbf{G}(\mathbf{r}, \mathbf{r}', \omega) \hat{\mathbf{f}}(\mathbf{r}', \omega)$$
Structure of the coupling for

each plasmon mode

Structure of the coupling

Connection between effective model and Green's tensor :

$$\sum_{n=1}^{N} |\kappa_n(\omega)|^2 = \frac{1}{\hbar\pi\epsilon_0} \frac{\omega^2}{c^2} \mathbf{d}_{21} \cdot \left(Im[\mathbf{G}(\mathbf{r}_d, \mathbf{r}_d, \omega)] \mathbf{d}_{21}^* \right)$$

Lorentzian fitting of the plasmon modes

$$\kappa_n(\omega) = \sqrt{\frac{\gamma_n}{2\pi}} \frac{g_n}{\omega - \omega_n + i\frac{\gamma_n}{2}}$$

Mode-selective quantization and easy-to-handle effective cQED models with plasmonic resonance D. Dzsotjan *et al, submitted* (2016)

Quantum plasmonics – Effective hamiltonian

$$\hat{H}_{I} = i\hbar \int_{0}^{+\infty} \int_{0}^{\infty} \left(\kappa_{n}^{*}(\omega) \hat{b}_{\omega,n}^{\dagger} \hat{\sigma}_{12} - \kappa_{n}(\omega) \hat{b}_{\omega,n} \hat{\sigma}_{21} \right) \qquad \kappa_{n}(\omega) = \sqrt{\frac{\gamma_{n}}{2\pi}} \frac{g_{n}}{\omega - \omega_{n} + i\frac{\gamma_{n}}{2}}$$

$$\prod_{\text{Integral}} \text{Integral} \qquad \qquad Dressed states$$

$$H_{eff} = \hbar \begin{bmatrix} -i\frac{\gamma_{0}}{2} & ig_{1} & ig_{2} & \cdots & ig_{N} \\ -ig_{1} & \Delta_{1} - i\frac{\gamma_{1}}{2} & 0 & \cdots & 0 \\ -ig_{2} & 0 & \Delta_{2} - i\frac{\gamma_{2}}{2} & \cdots & i \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -ig_{N} & 0 & \cdots & 0 & \Delta_{N} - i\frac{\gamma_{N}}{2} \end{bmatrix} \qquad \qquad \int_{\gamma_{1}} \int_{\gamma_{2}} \int_{\gamma_{1}} \int_{\gamma_{N}} \int_{\gamma_{N}} |g\rangle |i_{N}\rangle$$

Adiabatic passage mediated by plasmons: a route towards a decoherence-free quantum plasmonic platform B. Rousseaux *et al,* Phys. Rev. B 93, 045422 (2016)

Strong coupling regime

Monomode cavity (LSP₃)

$$H_{eff} = \hbar \begin{bmatrix} -i\frac{\gamma_0}{2} & ig_3\\ -ig_3 & \Delta_3 - i\frac{\gamma_3}{2} \end{bmatrix}$$

Strong coupling regime

Multimodal lossy cavity (LSPs)

Dressed states of a quantum emitter strongly coupled to a metal nanoparticle H. Varguet et al, submitted (2016)

Conclusion

Cavity quantum electrodynamics (cQED)

Purcell factor $F_{p} = \frac{\Gamma}{n_{1}\Gamma_{tot}}$ $= \frac{3}{4\pi^{2}} \left(\frac{\lambda}{n_{1}}\right)^{3} \frac{Q}{V_{eff}}$

Quantum plasmonics (cavity*less QED*)

Duration of interaction (high Q) Volume of interaction (sub-λ)

Thanks to

ICB Nanophotonics & plasmonics J. Barthes B. Rousseaux S. Derom H. Varguet A. Bouhelier D. Dszotjan J.-C Weeber A. Dereux

ICB Quantum control

H. Jauslin S. Guérin

> EUROPEAN COMMISSION

SEVENTH FRAMEWORK

ANR **QDOTICS**

