

Surface functionalization for plasmonic biosensors

Jean-Pierre Cloarec

jcloarec@ec-lyon.fr

ETPMSE 2016 JP Cloarec 23 juin 2016

Outline

• From transduction to biosensing...

- How surface functionalization influences your biosensor measurements
- Classical gold functionalization
 - Homogeneous thiolate SAMs : how it can disfunction. Gold cleaning, gold oxydation, metal defects, …
 - Mixed SAMs
- Selective functionalization of multiple materials

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Principle of an affinity biosensor

Implementing patterned transducing zones

Example: lithography

Resist residues ? Porosity of implemented layers ? Other contaminations ?

Image adapted from A. Duval, PhD Thesis, 2009

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Of surfaces and humans

God made the bulk, but surface was invented by the devil » Wolfgang Pauli

Surface chemistry 101

A substrate-binding headgroup

Sulfhydril (thiol)on gold : -SH Silane on silica : -Si-(X)₃

A spacer chain

Alkyl : $-(CH_2)_n$ -OEG : $-(CH_2-CH_2-O)_n$ -Perfluorinated : $-(CF_2)_n$ -

A functional headgroup

Target-binding on gold : -Biotin, -COOH/NHS, -NH₂

Anti-fouling on silica : -OCH₃

 $-CF_3$

Institut des Nanotechnologies de Lyon UMR CNRS 5270

The trouble with surface chemistry : a diversity of bonds

Electrical / ionic organization of solid/liquid interface

fr

The trouble with surface chemistry...

• Molecular flip-flaps

Physisorption

٠

- Bulk polymerisation
- Heterogeneity

- Entrapments
- Non specific adsorption

G. Whitesides

A. Ulmann

Outline

• From transduction to biosensing...

 How surface functionalization influences your biosensor measurements

- Classical gold functionalization
 - Homogeneous thiolate SAMs : how it can disfunction. Gold cleaning, gold oxydation, metal defects, …
 - Mixed SAMs

• Selective functionalization of multiple materials

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Influence of functionalization on biosensing efficiency

Influence of functionalisation on biosensing efficiency

realistic case

Influence of functionalisation on biosensing efficiency

Realistic case

Targets are usually less concentrated than interfering species Targets may have different properties compared to interfering species (eg : mass is important for SPR analysis)

Institut des Nanotechnologies de Lyon UMR CNRS 5270

SERS as a transduction method : how to get the targets close to the nano-antennas ?

Minimize the immobilization layer Use « small » biomolecular probes

Examples : thiolated DNA aptamers ScFv antibody fragments

Cottat et al., *J. Phys. Chem. C* 2015, 119, 15532-15540

c 23 juin 2016

Outline

- From transduction to biosensing...
- How surface functionalization influences your biosensor measurements
- Classical gold functionalization
 - Homogeneous thiolate SAMs : how it can disfunction. Gold cleaning, gold oxydation, metal defects, …
 - Mixed SAMs
- Selective functionalization of multiple materials

Institut des Nanotechnologies de Lyon UMR CNRS 5270

An example of classical steps for functionalization : the case for a glass/gold/thiols SPR biosensor

Elaboration has to be characterized

Surface characterization tools : example @ INL

Technique	Chemical information	Lateral resolution	Other limitations
PM-IRRAS	YES	mm	Only on metal
XPS	YES	μm	Availability
ToF-SIMS	YES	μm	Availability
Fluorescence scan	NO	μm	Only on dielectric
SEM	NO	nm	-
AFM	NO	nm	Scan area ≤ 50 × 50 <i>µm</i>

Outline

- From transduction to biosensing...
- How surface functionalization influences your biosensor measurements
- Classical gold functionalization
 - Homogeneous thiolate SAMs : how it can disfunction. Gold cleaning, gold oxydation, metal defects, …
 - Mixed SAMs
- Selective functionalization of multiple materials

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Self-Assembled Monolayers (SAM) : general mechanism of formation

Self-Assembled Monolayers

Institut des Nanotechnologies de Lyon UMR CNRS 5270

ETPMSE 2016 JP Cloarec 23 juin 2016

SAMS defects : example of alkylthiols on gold supports

Figure 6.11 Schematic illustration of possible defects of SAMs adsorbed on a molecular scale "nanorough" gold surface. Such defects can cause local non-specific interactions.

The quality of metal surface just before SAM formation is of primary importance

Importance of surface cleaning

Cleaning can have side effects

Results : Wait for gold de-oxidation after plasma cleaning $^{+}$

Outline

- From transduction to biosensing...
- How surface functionalization influences your biosensor measurements
- Classical gold functionalization
 - Homogeneous thiolate SAMs : how it can disfunction. Gold cleaning, gold oxydation, metal defects, …
 - Mixed SAMs

• Selective functionalization of multiple materials

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Fonctionnalisation chimique de surfaces

Fonctionnalisation de surfaces homogènes avec SAM homogènes Fonctionnalisation de surfaces homogènes avec **SAM mixtes**

2 thiols différents mélangés sur une même surface d'or

Mixed SAMs chemical functionalization

Refer to work of Claire-Marie Pradier's group, Laboratoire de Réactivité des Surfaces, Paris

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Functionalization of gold with mixed SAMs : example

Institut des N

Outline

- How surface functionalization influences your biosensor measurements ?
 - Sensors analytical performances...
 - ...and how bioreceptor elaboration can influence it
 - From molecular interaction to non specific interactions
- Classical approaches
 - Homogeneous thiolate SAMs : how it can disfunction. Gold cleaning, gold oxydation, metal defects, …
 - Capping, blocking
 - Mixed SAMs

• Selective functionalization of multiple materials

Selective surface functionalization

Example of Localized Surface Plasmon Resonance sensor

Managing complexity...

When possible, use materials with intrinsinc adapted surface properties (e.g. electric charge)

If necessary, use surface functionalization steps

Goal : use simultaneous, surface specific functionalization reactions

Selective functionalization of mixed surfaces

ETPMSE 2016 JP Cloarec 23 juin 2016

Orthogonal functionalization of bi-structured substrates

Palazon et al., Beilstein Journal of Nanotechnology 2015, 6, 2272–2277

Orthogonal functionalization of bi-structured substrates

Palazon et al., Beilstein Journal of Nanotechnology 2015, 6, 2272–2277

Specific capture of microparticles on bi-structured substrate

Interaction of bi-structured support with nanoparticles

Matrix of nano-antenna (NA) on SiO₂ support

Carboxy-latex NanoParticles (NP)

Capture of nanoparticles on nanoantennas

Very low non specific adsorption

1000 fabricated nano-antennas 109 inspected by SEM

Gold dimer nanoantenna

~70 % of NA have captures a NP Only 0.2 NP per μm^2 of SiO_2

Palazon et al., Journal of Colloid and Interface Science 447 (2015) 152–158

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Project funded by

Rhône Alpes Project Coopera

Institut des Nanotechnologies de Lyon UMR CNRS 5270

ETPMSE 2016 JP Cloarec 23 juin 2016

project Piranex

S. Ansanay-Alex, Y. Chevolot, E. Laurenceau, F. Palazon, T. Géhin, E. Souteyrand...

J-F. Bryche, G. Barbillon, B. Bartenlian,

R. Gillibert, R. Yasukuni,M. Lamy de Lachapelle,

E. Maillart, A. Olivero

A. Olivero, J.F. Bryche, M. Sarkar, M. Besbes, J. Moreau and M. Canva

Surface functionalizations

Nanofabrication

SERS measurements

Instrumentation

Modelling & SPR imaging

Merci de votre attention

ETPMSE 2016 JP Cloarec 23 juin 2016