

SERS and SEIRA Signal optimisation and applications

UNIVERSITÉ PARIS 13

Marc Lamy de la Chapelle

Laboratoire CSPBAT UMR7244, UFR SMBH, Université Paris XIII, 74 rue Marcel Cachin, 93017 Bobigny, France *email: marc.lamydelachapelle@univ-paris13.fr*

Plan du cours

1. SERS signal optimisation

2. SERS sensor

3. SEIRA

4. SERS/SEIRA coupling

Signal optimisation in SERS

SERS principle

SERS principle: Electromagnetic effect

N. Guillot et al. JQSRT 113, 2321, 2012, N. Guillot et al., J. of Nanophotonics, 6(1), 64506, 2012

Near field enhancement

Gold nanowire : long axis = 150 nm

Intensity map at 712 nm

Intensity map at 800 nm

A.S. Grimault et al. Appl. Phys. B 84, 111, 2006

SERS Experiments

SERS Experiments

Nanocylinders : 100 nm < Ø < 200 nm, height = 50 nm

$$\lambda_{exc} = 633 \text{ nm}$$
$$\lambda_{exc} = 660 \text{ nm}$$
$$\lambda_{exc} = 691 \text{ nm}$$
$$\lambda_{exc} = 785 \text{ nm}$$

trans-1,2-bis(4-pyridyl)ethylene (BPE) 1007 cm⁻¹: pyridine ring breathing mode 1200 cm⁻¹: C=C stretching mode 1606 cm⁻¹: pyridine ring C=C stretching mode 1636 cm⁻¹: whole pyridine ring stretching mode

SERS vs diameter

SERS vs LSPR

$$\mathbf{G}_{\mathrm{SERS}} = |f(\lambda_{\mathrm{exc}}).f(\lambda_{\mathrm{R}})|^{2}$$

 $G_{SERS} Max \implies \lambda_{exc} < \lambda_{LSPR} < \lambda_{R}$

A.Wokaun *et al.*, *Solid State Phys.* 38, 1984 N. Guillot *et al. JQSRT* **113**, 2321, 2012, N. Guillot et al., *J. of Nanophotonics*, **6(1)**, 64506, 2012

SERS Experiments

F. Colas et al., J. Phys. Chem. C accepted

SERS Experiments

N. Guillot, Appl. Phys. Lett. 97, 023113 (2010)

SERS vs LSPR

⇒ Shift between the expected LSPR position and the effective one
⇒ Near-field / Far-field shift ?

Comparison DDA - Experiments

Discrete Dipole Approximation (DDSCAT 7.3) B. Draine, P. Flatau, *JOSA A*, 1994, 11(4)1491-1499

⇒ Good agreement between DDA calculations and experiments

Comparison DDA - Experiments

⇒ Observation of the shift between the expected and the observed LSPR
⇒ Change in the relative intensity of the enhancement

Near-field/Far-field discrepancy

LSPR

Far field measurement

SERS

Near field measurement

⇒ Broadening and decrease of the intensity of the nearfield enhancement

Near-field/Far-field discrepancy

⇒ Best SERS enhancement for a lower diameter and thus for a blueshifted LSPR

F. Colas et al., J. Phys. Chem. C accepted

SERS vs LSPR

Nanocylinders : 50 nm < diameter < 200 nm Nano-ellipses : 50 nm < major axis < 200 nm

> Excitation Wavelength $\lambda_{exc} = 632.8nm$ BPE Raman mode: 1200cm⁻¹ $\lambda_{R} = 685nm$

$$G_{\text{SERS}} = |f(\lambda_{\text{exc}}).f(\lambda_{\text{R}})|^2$$
$$G_{\text{SERS}} \text{Max} \Rightarrow \lambda_{\text{exc}} < \lambda_{\text{LSPR}} < \lambda_{\text{R}}?$$

J. Grand. et al., PRB 72, 33407, 2005

Gold Nanowires

L = from 50 nm to 1000 nm, l = 60 nm, height = 50 nm, PPX = PPY = 200 nm

Gold Nanowires : SERS

⇒ Raman enhancement maximum for one optimum length (L. Billot *et al.*, *CPL* 422, 303, 2006)

Gold Nanowires : LSPR

⇒ Observation of odd multipolar LSPR

(G. Schider et al., PRB 68, 155427, 2003)

Gold Nanowires : LSPR

⇒ Best enhancement for LSPR close to 675 nm, $\approx \lambda_R$ ⇒ Some multipolar LSPR have better enhancement than dipolar LSPR

LSPR rules

				\bigcirc	
λ_{Exc}	633	660	785	633,	514, 532
				676	633
λ_{LSPR}	$= (\lambda_0 + \lambda_R)/2$	$pprox \lambda_0$	$<\lambda_0$	$pprox \lambda_R$	$\lambda_0 < \lambda_{LSPR} < \lambda_R$
rules					

⇒ The LSPR rules depend on the shape of the nanostructures and on the excitation wavelength

Electromagnetic Coupling

Systematic study to measure the consequences of coupling on LSPR and on SERS

P. Mühlshlegel et al., Science 308, 1607, 2005

Electromagnetic Coupling

Gx (nm)	Length L (nm)	Height=Width (nm)	Dy=Dy
10,20,30,40,50, 75,100,150,200	100	60	200
10,20,30,40,50, 75, 00,150,200	200	60	200

Electromagnetic Coupling: LSPR

J. Aizpurua et al, PRB 71, 2005, 235420

Electromagnetic Coupling: SERS

BPE (10⁻³ M)

Methylen Blue (10⁻³ M)

⇒ Coupling for a lower gap and lower SERS intensity for L=200 nm

S. Kessentini et al., J. Phys. Chem. C 118, 3209, 2014

Electromagnetic Coupling: SERS

 \Rightarrow No coupling for excitation wavelength at 633 and 660nm

Electromagnetic Coupling: simulation

Adhesion layer

Adhesion layer between glass and gold ⇒ Cr or MPTMS

Adhesion layer: LSPR

Adhesion layer: SERS

H. Shen et al., Optics Express 20, 21278, 2012

Influence of the substrate : SERS

⇒ SERS intensity one order of magnitude higher with gold film

J.F. Bryche et al., Plasmonics 11, 601, 2016

Influence of the substrate : SERS

Gold film => angular dependence Without gold film => no dependence

R. Gillibert et al., Nanotechnology 27, 115202, 2016

Influence of the substrate : Plasmon

$$SPP \leftarrow P \Rightarrow k_{B}$$

$$SPP \qquad SPP$$

$$k_{BM} = k_{spp} \pm k_{B}$$

$$= k_{0} \sin \theta - \begin{bmatrix} Bragg \\ conditions \end{bmatrix}$$

$$k_{spp}^{a, g} \text{ Gold/Air or Gold/Glass}$$

 \Rightarrow Constructive interferences when $k_{spp} \pm k_B = k_0 \sin \theta$

 \Rightarrow Excitation of a Bragg Mode (BM_a and BM_g)

Conclusions

1. Optimization of the gold nanostructure

- I. LSPR rules depends on shape and excitation wavelength
 - Far field / Near field
 - Tip effect
- II. Coupling
- III. Nanostructure environment
- 2. Gold nanostructure arrays
 - ⇒ Reproducible SERS nanosensor
 - ⇒ Sensorchip

SERS sensor

Sensor principle

4 steps approach

- 1. Raman spectrocopy: Label Free detection
- 2. Nanoparticle: High sensitivity
- 3. Bioreceptor: High molecular selectivity
- 4. Nanoparticle array: High reproducibility

λ=785nm

Benzenethiol $\lambda_{exc} = 785$ nm

⇒ At 785 nm, LOD = 1 pM
 ⇒ Dimers are two orders of magnitude more sensitive

MnSOD Detection

- Cleaning samples with UV ozone and ethanol
- Aptamer:

deposit **1h** of **c=100 ng/μL** wash with KCl buffer **2x5 min**

- Blocking molecule : 6-Mercapto-1-hexanol incubation 1h of c=2 mM wash with ethanol
- MnSOD sample: incubation **1h** Wash with PBS buffer

MnSOD Detection: SERS

Laser : **660** nm for ϕ =**140** nm (10s, 0,1 mW)

MnSOD Detection: SERS

Laser : 660 nm for ϕ =140 nm (10s, 0,1 mW)

MnSOD Detection: SERS

Laser : 660 nm for ϕ =140 nm (10s, 0,1 mW)

MnSOD Detection: PCA

MnSOD Detection: PCA

Observation of the spectral variation after the MnSOD deposition

 ⇒ Shift of the aptamer bands
 ⇒ Modification of the aptamer conformation with MnSOD interaction

MnSOD Detection: PLS

Partial Least Square regression: 30 spectra / 10 per concentration

Discrimination of the different concentrations

Conclusions

- 1. Detection limit at the picomolar level
- 2. Detection of proteins at low concentration
- 3. Reproducible SERS nanobiosensor

Surface Enhanced IR Absorption

Surface Enhanced IR Absoprtion

Principle : Exploit the near field enhancement created at the nanoantenna vicinity

Nanoantenna

- Micrometric length
- Nanometric width

⇒ Coupling between the molecular vibration and the surface plasmon

Surface Enhanced IR Absoprtion

Measurement in transmission with an IR microscope

Surface plasmon in IR

F. Neubrech, et al, Appl. Phys. Lett. 93, 163105, 2008L. Novotny, PRL 98, 266802 (2007)

Detection by SEIRA

Gold nanowires on CaF_2 , Electrochimistry on membrane, Diameter = 100 nm Monolayer of OctaDecaThiol (ODT, C18H37SH)

⇒ Enhancement factor around 300 000

F. Neubrech, et al., Phys. Rev. Lett. 101, 157403, 2008

Detection by SEIRA: influence of the LSPR

⇒ Fano behaviour

SERS/SEIRA coupling

SERS/SEIRA: principle

C. D'Andrea, et al., ACS Nano, 7(4), 3522, 2013

SERS/SEIRA: nanostructures

Methylene blue: 10⁻⁴ M

SERS/SEIRA: LSPR

⇒ E_{Para}: Plasmon resonance in IR / SEIRA
 ⇒ E_{Perp}: Plasmon resonance in the visible / SERS

SERS/SEIRA: SERS

 \Rightarrow Enhancement factor = 5.10²

SERS/SEIRA: SEIRA

 \Rightarrow Enhancement factor = 6.10⁵

Conclusion

- 1. Large enhancement factor in SEIRA with nanoantenna
- 2. Optimisation of the signal in SEIRA
- 3. SERS and SEIRA coupling with individual nanoantenna

References

WILEY-VCH

Wolfgang Fritzsche and Marc Lamy de la Chapelle

Molecular Plasmonics

Molecular Plasmonics W. Fritzsche M. Lamy de la Chapelle Wiley VCH Verlag, 2014

Nanoantenna M. Lamy de la Chapelle, A. Pucci Pan Stanford Publishing, 2013

Handbook on Enhanced Spectroscopies P. Gucciardi, M. Lamy de la Chapelle, N. Lidgi-Guigui Pan Stanford Publishing, 2016

Special issue on surface-enhanced Raman spectroscopy Journal of Optics, Volume 17, Numéro 11, Novembre 2015

NANOANTENNA European Project HEALTH-F5-2009-241818

AGENCE NATIONALE DE LA RECHERCHE

REMANTAS and PIRANEX ANR Project

CSPBAT – UMR7244 R. Gillibert M. Cottat I. Tijunelyte N. Guillot R. Yasukuni G. Picardi N. Lidgi N. Djaker M. Triba

IPCF - CNR C. d'Andrea B. Fazio P. Gucciardi

ICD-LNIO J. Ibrahim H. Shen T. Toury

N. Malashikhina R. Grinyté V. Pavlov Inserm Institut national de la santé et de la recherche médicale

BPC – U1148 H. Hlawaty A. Sutton O. Oudar N. Charnaux

A. Toma R. P. Zaccaria E. di Fabrizio ffremer

E. Rinnert F. Colas